AVL Trees

CSE 373
Data Structures

Readings

- Reading
 - Goodrich and Tamassia, Chapter 9

4/15/2004

CSE 373 - SP 04 -- AVL Trees

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is d = [log₂N] for a binary tree with N nodes
 - > What is the best case tree?
 - What is the worst case tree?
- So, best case running time of BST operations is O(log N)

4/15/2004

CSE 373 - SP 04 -- AVL Trees

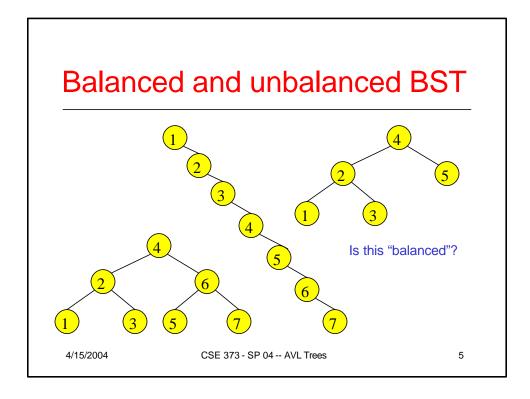
3

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - Unbalanced degenerate tree

4/15/2004

CSE 373 - SP 04 -- AVL Trees



Approaches to balancing trees

- Don't balance
 - > May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - > Only allow a little out of balance
- Adjust on access
 - > Self-adjusting

4/15/2004

CSE 373 - SP 04 -- AVL Trees

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - > Splay trees and other self-adjusting trees
 - > B-trees and other multiway search trees

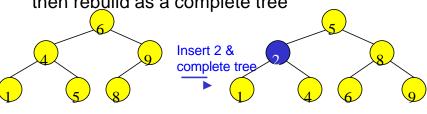
4/15/2004

CSE 373 - SP 04 -- AVL Trees

7

Perfect Balance

- Want a complete tree after every operation
 - > tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree



4/15/2004

CSE 373 - SP 04 -- AVL Trees

U

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node

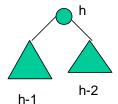
4/15/2004

CSE 373 - SP 04 -- AVL Trees

a

Height of an AVL Tree

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis
 - N(0) = 1, N(1) = 2
- Induction
 - \rightarrow N(h) = N(h-1) + N(h-2) + 1
- Solution (recall Fibonacci analysis)
 - \rightarrow N(h) $\geq \phi^h$ ($\phi \approx 1.62$)



4/15/2004

CSE 373 - SP 04 -- AVL Trees

Height of an AVL Tree

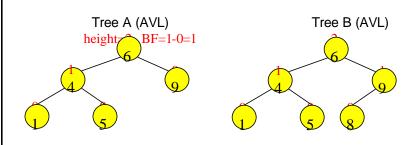
- $N(h) \ge \phi^h \quad (\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
 - \rightarrow $n \ge N(h)$ (because N(h) was the minimum)
 - $n \ge \phi^h$ hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - \rightarrow h \leq 1.44 log₂n (i.e., Find takes O(logn))

4/15/2004

CSE 373 - SP 04 -- AVL Trees

11

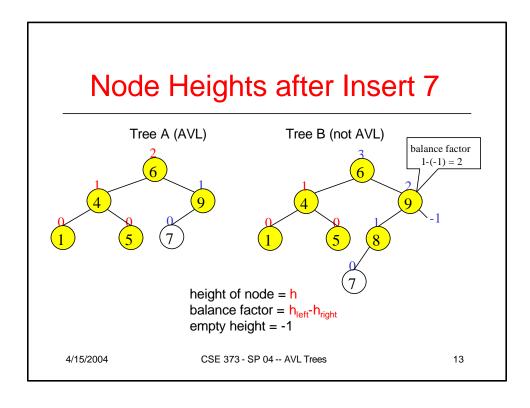
Node Heights



height of node = hbalance factor = h_{left} - h_{right} empty height = -1

4/15/2004

CSE 373 - SP 04 -- AVL Trees



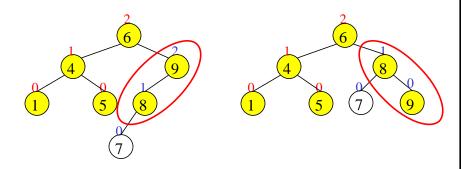
Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}-h_{right}) is 2 or -2, adjust tree by *rotation* around the node

4/15/2004

CSE 373 - SP 04 -- AVL Trees

Single Rotation in an AVL Tree



4/15/2004

CSE 373 - SP 04 -- AVL Trees

15

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α .

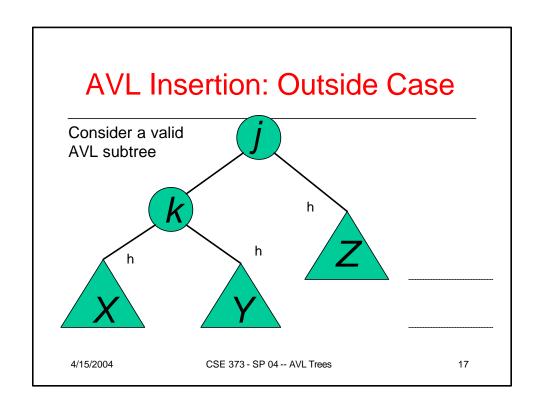
Inside Cases (require double rotation):

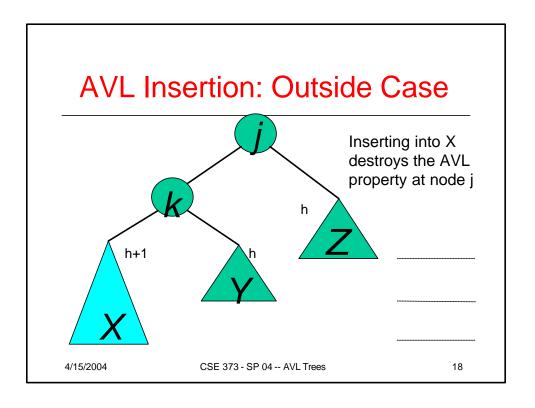
- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

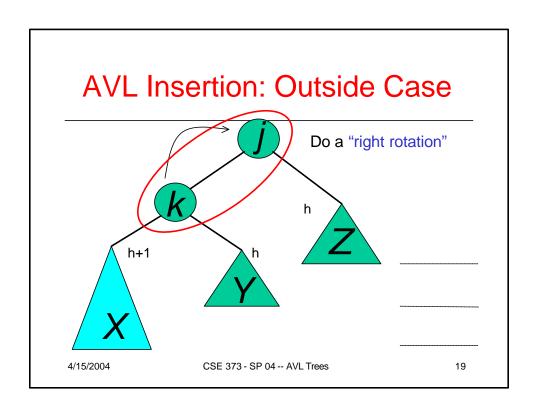
The rebalancing is performed through four separate rotation algorithms.

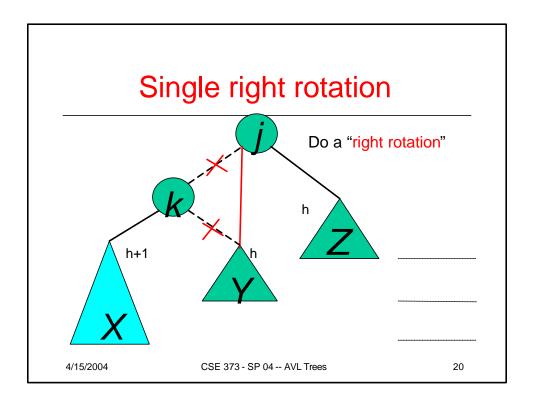
4/15/2004

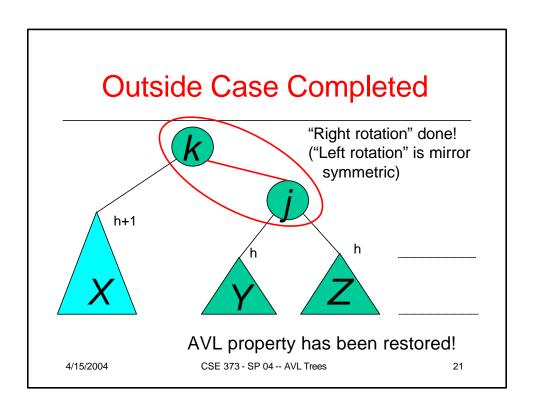
CSE 373 - SP 04 -- AVL Trees

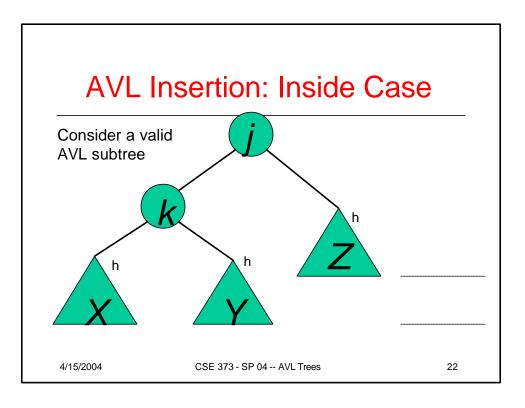


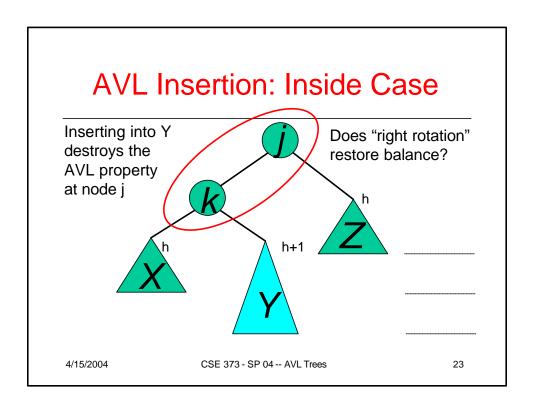


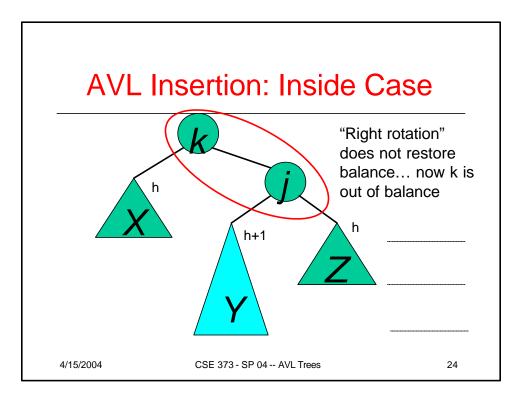


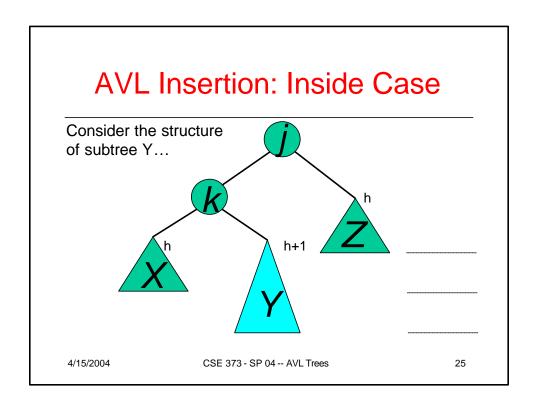


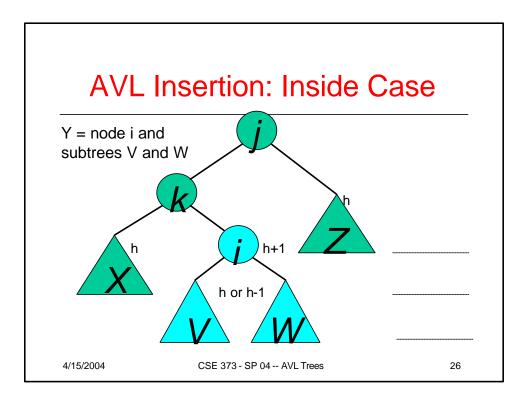


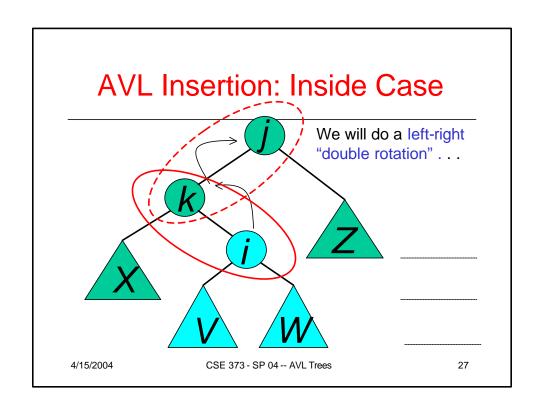


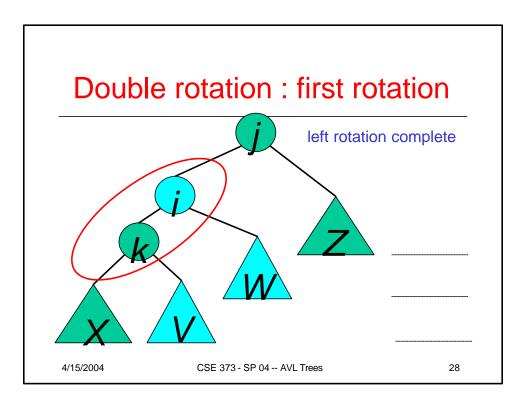


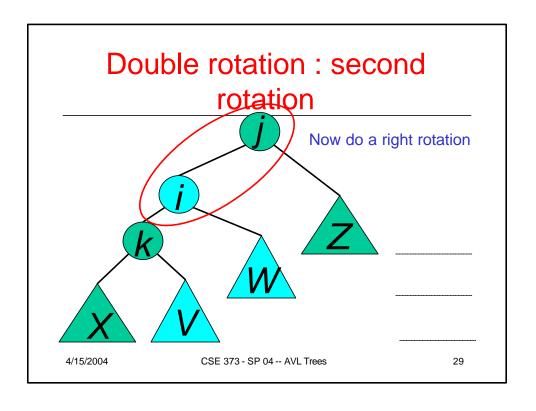


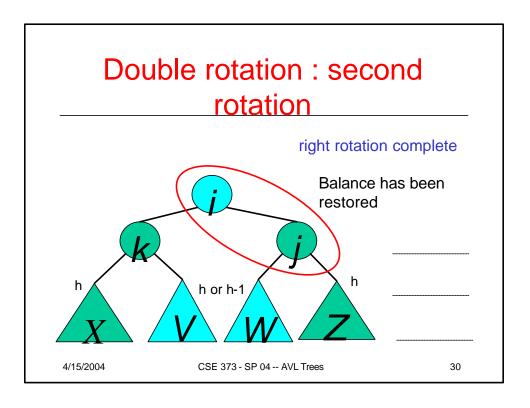




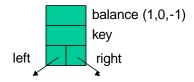








Implementation



No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

4/15/2004

CSE 373 - SP 04 -- AVL Trees

31

Single Rotation

```
RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

You also need to modify the heights or balance factors of n and p
```

4/15/2004

CSE 373 - SP 04 -- AVL Trees

Double Rotation

• Implement Double Rotation in two lines.

```
DoubleRotateFromRight(n : reference node pointer) {
????
}

A/15/2004 CSE 373-SP 04-- AVL Trees

33
```

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}-h_{right}) is 2 or -2, adjust tree by *rotation* around the node

4/15/2004

CSE 373 - SP 04 -- AVL Trees

Insert in BST

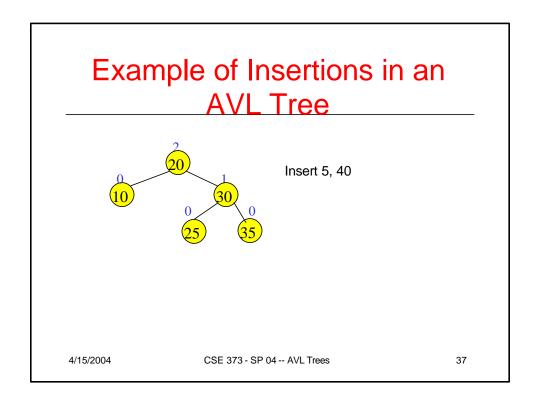
4/15/2004

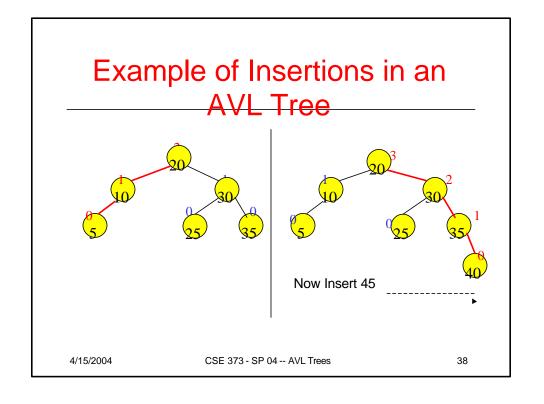
CSE 373 - SP 04 -- AVL Trees

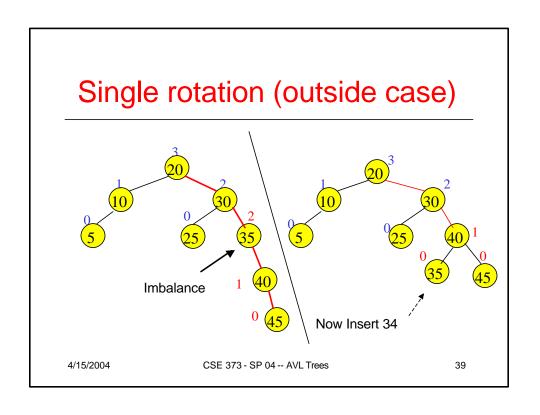
35

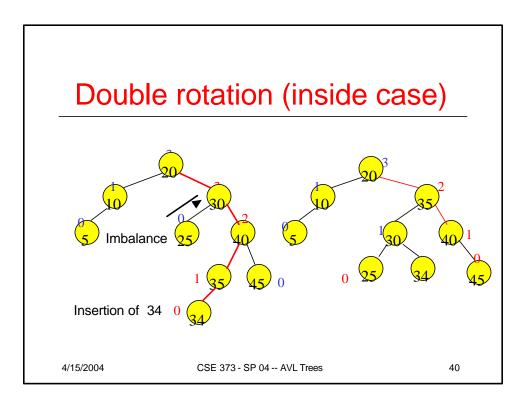
Insert in AVL trees

```
Insert(T : reference tree pointer, x : element) : {
if T = null then
  {T := new tree; T.data := x; height := 0; return;}
case
 T.data = x : return ; //Duplicate do nothing
 T.data > x : Insert(T.left, x);
               if ((height(T.left) - height(T.right)) = 2){
                  if (T.left.data > x) then //outside case
                         T = RotatefromLeft (T);
                  else
                                              //inside case
                         T = DoubleRotatefromLeft (T);}
 T.data < x : Insert(T.right, x);</pre>
                code similar to the left case
 T.height := max(height(T.left),height(T.right)) +1;
 return;
4/15/2004
                      CSE 373 - SP 04 -- AVL Trees
                                                               36
```









AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

41

4/15/2004 CSE 373 - SP 04 -- AVL Trees

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

4/15/2004 CSE 373 - SP 04 -- AVL Trees 42

Double Rotation Solution

```
DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}
```

4/15/2004

CSE 373 - SP 04 -- AVL Trees