AVL Trees

CSE 373
Data Structures

Readings

» Reading

> Goodrich and Tamassia, Chapter 9

4/7/2004 CSE 373 - SP 04 - AVL Trees 2

Binary Search Tree - Best

Hme
« All BST operations are O(d), where d is
tree depth
» minimum d is d = gog,N(jfor a binary tree
with N nodes
> What is the best case tree?
> What is the worst case tree?

* S0, best case running time of BST
operations is O(log N)

4[7/12004 CSE 373 - SP 04 - AVL Trees 3

Binary Search Tree - Worst

Hme
» Worst case running time is O(N)
> What happens when you Insert elements in
ascending order?
* Insert: 2, 4, 6, 8, 10, 12 into an empty BST
> Problem: Lack of “balance”:
» compare depths of left and rightsubtree
> Unbalanced degenerate tree

4/7/2004 CSE 373 - SP 04 - AVL Trees 4

Balanced and unbalanced BST

Is this “balanced"?

4/7/2004 CSE 373 - SP 04 - AVL Trees 5

Approaches to balancing trees

» Don't balance
> May end up with some nodes very deep
* Strict balance
> The tree must always be balanced perfectly
* Pretty good balance
> Only allow a little out of balance
¢ Adjust on access
> Self-adjusting

4/7/2004 CSE 373 - SP 04 - AVL Trees 6




Balancing Binary Search
Trees

« Many algorithms exist for keeping
binary search trees balanced
> Adelson-Velskii and Landis (AVL) trees
(height-balanced trees)
> Splay trees and other self-adjusting trees
> B-trees and other multiway search trees

4[7/12004 CSE 373 - SP 04 - AVL Trees 7

Perfect Balance

« Want a complete tree after every operation
> tree is full except possibly in the lower right
« This is expensive

> For example, insert 2 in the tree on the left and
then rebuild as a complete tree

Insert2 &
complete tree
—

4/7/2004 CSE 373 - SP 04 - AVL Trees 8

AVL - Good but not Perfect

RAalanen

DUATUTTO U

» AVL trees are height-balanced binary
search trees

« Balance factor of a node
> height(left subtree) - height(right subtree)

< An AVL tree has balance factor
calculated at every node

> For every node, heights of left and right
subtree can differ by no more than 1

> Store current heights in each node

4[7/12004 CSE 373 - SP 04 - AVL Trees 9

Height of an AVL Tree

* N(h) = minimum number of nodes in an
AVL tree of height h.

* Basis
> N©0) =1, N(1) =2

* Induction A
> N(h) = N(h-1) + N(h-2) + 1 A A

» Solution (recall Fibonacci analysis)
> N(h) =fh (f »1.62) ha 2

4/7/2004 CSE 373 - SP 04 - AVL Trees 10

Height of an AVL Tree

* N(h)>f" (f » 1.62)
e Suppose we have n nodes in an AVL
tree of height h.
>N 2> N(h) (because N(h) was the minimum)
> n >fhhence log; n > h (relatively well
balanced treel!l)

> h <1.44 log,n (i.e., Find takes O(logn))

4/7/2004 CSE 373 - SP 04 - AVL Trees 11

Node Heights

Tree B (AVL)

height of node =h
balance factor = hy,-h g,
empty height = -1

4/7/2004 CSE 373 - SP 04 - AVL Trees 12




Node Heights after Insert 7

Tree A (AVL)

Tree B (not AVL)

balance factor

height of node =h
balance factor = hje-hi
empty height = 11

4[7/12004 CSE 373 - SP 04 - AVL Trees 13

Insert and Rotation in AVL
Trees

« Insert operation may cause balance factor
to become 2 or —2 for some node
> only nodes on the path from insertion point to
root node have possibly changed in height
> So after the Insert, go back up to the root
node by node, updating heights

> If a new balance factor (the difference h,+
hiignt) is 2 or -2, adjust tree by rotation around
the node

4/7/2004 CSE 373 - SP 04 - AVL Trees 14

Single Rotation in an AVL

Trapa
Treee

4[7/12004 CSE 373 - SP 04 - AVL Trees 15

Insertions in AVL Trees

Let the node that needs rebalancing bea.

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child ofa.
2. Insertion into rightsubtree of right child of a.
Inside Cases (require double rotation) :
3. Insertion into rightsubtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four
separate rotation algorithms.

4/7/2004 CSE 373 - SP 04 - AVL Trees 16

AVL Insertion; Outside Case

Consider a valid
AVL subtree

4/7/2004 CSE 373 - SP 04 - AVL Trees 17

AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node j

4/7/2004 CSE 373 - SP 04 - AVL Trees 18




AVL Insertion; Outside Case

Do a “right rotation”

4[7/12004 CSE 373 - SP 04 - AVL Trees 19

Single right rotation

Do a “right rotation”

h+1

4/7/2004 CSE 373 - SP 04 - AVL Trees 20

Outside Case Completed

“Right rotation” done!
(“Left rotation” is mirror
symmetric)

AVL property has been restored!

4[7/12004 CSE 373 - SP 04 - AVL Trees 21

AVL Insertion: Inside Case

Consider a valid
AVL subtree

4/7/2004 CSE 373 - SP 04 - AVL Trees 22

AVL Insertion; Inside Case

Inserting into Y
destroys the

AVL property
at node |

Does “right rotation”
restore balance?

4/7/12004 CSE 373 - SP 04 - AVL Trees 23

AVL Insertion: Inside Case

“Right rotation”
does not restore
balance... nowk is
out of balance

4/7/2004 CSE 373 - SP 04 - AVL Trees 24




AVL Insertion: Inside Case

Consider the structure
of subtree V...

4[7/12004 CSE 373 - SP 04 - AVL Trees 25

AVL Insertion: Inside Case

Y =node i and
subtrees V and W

4/7/2004 CSE 373 - SP 04 - AVL Trees 26

AVL Insertion: Inside Case

/

/' We will do a left-right
“double rotation” . . .

4[7/12004 CSE 373 - SP 04 - AVL Trees 27

Double rotation : first rotation

left rotation complete

4/7/2004 CSE 373 - SP 04 - AVL Trees 28

Double rotation : second

Now do a right rotation

4/7/12004 CSE 373 - SP 04 - AVL Trees 29

Double rotation : second

rotation
TOUTUATTUTT

right rotation complete

Balance has been
stored

4/7/2004 CSE 373 - SP 04 - AVL Trees 30




Implementation

balance (1,0,-1)
key
left right

No need to keep the height; just the difference in height,
i.e. the balance factor; this has to be modified on the path of
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won't
need to go back up the tree

4[7/12004 CSE 373 - SP 04 - AVL Trees 31

Single Rotation

Rot at eFronRi ght (n : reference node pointer) {
p : node pointer;
p := n.right;
n.right :=p.left;
p.left :=n;
n:=p

}

You also need to

modify the heights
or balance factors
of nand p

4/7/2004 CSE 373 - SP 04 - AVL Trees 32

Double Rotation

 Implement Double Rotation in two lines.

Doubl eRot at eFronRi ght (n : reference node pointer) {
?22?? n

}

4[7/12004 CSE 373 - SP 04 - AVL Trees 33

Insertion in AVL Trees

« Insert at the leaf (as for all BST)

> only nodes on the path from insertion point to
root node have possibly changed in height

> So after the Insert, go back up to the root
node by node, updating heights

> If a new balance factor (the difference hy
hiignt) IS 2 or —2, adjust tree by rotation around
the node

4/7/2004 CSE 373 - SP 04 - AVL Trees 34

Insert in BST

Insert(T : reference tree pointer, x : element) : integer {
if T=null then
T :=newtree; T.data :=x; return 1;//the links to
I'lchildren are null

case
T.data = x : return O; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x)

endcase

}

4/7/2004 CSE 373 - SP 04 - AVL Trees 35

Insert in AVL trees

Insert(T : reference tree pointer, x : element) : {
if T=null then

{T :=newtree; T.data := x; height := 0; return;}
case

T.data = x : return ; //Duplicate do nothing

T.data > x : Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x ) then //outside case
T = Rotatefronieft (T);

el se /1inside case
T = Doubl eRot atef ronteft (T);}
T.data < x : Insert(T.right, x)
code sinilar to the left case

Endcase

T. height := max(height(T.left), height(T.right)) +1

return;
}
4/7/2004 CSE 373 - SP 04 -- AVL Trees 36




Example of Insertions in an
AVl Tree

Insert 5, 40

4[7/12004 CSE 373 - SP 04 - AVL Trees 37

Example of Insertions in an
AVl Tree

4/7/2004 CSE 373 - SP 04 - AVL Trees 38

Single rotation (outside case)

N
Imbalance 1

Now Insert 34

4[7/12004 CSE 373 - SP 04 - AVL Trees 39

Double rotation (inside case)

Insertion of 34 0

4/7/2004 CSE 373 - SP 04 - AVL Trees 40

AVL Tree Deletion

« Similar but more complex than insertion

> Rotations and double rotations needed to
rebalance

> Imbalance may propagate upward so that
many rotations may be needed.

4/7/2004 CSE 373 - SP 04 - AVL Trees 41

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Searchis O(log N) since AVL trees are always balanced.

2. Insertion and deletions are also O(ogn)

3. The height balancing adds no more than a constant factor to the
speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for balance factor.

2. Asymptotically faster but rebalancing costs time.

3. Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run time for
many consecutive operations is fast (e.g. Splay trees).

4/7/2004 CSE 373 - SP 04 - AVL Trees 42




Double Rotation Solution

Doubl eRot at eFronRi ght (n : reference node pointer) {
Rot at eFromieft(n.right);
Rot at eFr onRi ght (n);

}

n

4[7/12004 CSE 373 - SP 04 - AVL Trees 43




