AVL Trees

CSE 373
Data Structures

Readings

- Reading
 - Goodrich and Tamassia, Chapter 9

4/7/2004

CSE 373 - SP 04 - AVLTrees

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is d=[log₂N] for a binary tree with N nodes
 - > What is the best case tree?
 - > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

4/7/2004

CSE 373 - SP 04 - AVLTrees

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - → Problem: Lack of "balance":
 - compare depths of left and right subtree
 - › Unbalanced degenerate tree

7/2004 CSE 373 - SP 04 - AVL Trees

Balanced and unbalanced BST Is this "balanced"?

Approaches to balancing trees

- Don't balance
 - › May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - > Only allow a little out of balance
- · Adjust on access
 - › Self-adjusting

4/7/2004

CSE 373 - SP 04 -- AVL Trees

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - > Splay trees and other self-adjusting trees
 - > B-trees and other multiway search trees

4/7/2004 C

CSE 373 - SP 04 - AVLTrees

Perfect Balance Want a complete tree after every operation tree is full except possibly in the lower right This is expensive For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- · Balance factor of a node
 - height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

4/7/2004

CSE 373 - SP 04 - AVLTrees

Height of an AVL Tree

CSE 373 - SP 04 -- AVLTrees

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis

4/7/2004

- \rightarrow N(0) = 1, N(1) = 2
- Induction
 - \rightarrow N(h) = N(h-1) + N(h-2) + 1
- Solution (recall Fibonacci analysis)
 - $\rightarrow N(h) \ge \phi^h \quad (\phi \approx 1.62)$

h-1 h-2

04 CSE 373 - SP 04 - AVL Trees

Height of an AVL Tree

- $N(h) \ge \phi^h \quad (\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
 - $\rightarrow n \ge N(h)$ (because N(h) was the minimum)
 - $n \ge \phi^h$ hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - \rightarrow h \leq 1.44 log₂n (i.e., Find takes O(logn))

4/7/2004

CSE 373 - SP 04 - AVL Trees

Insert and Rotation in AVL Trees

- · Insert operation may cause balance factor to become 2 or -2 for some node
 - › only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{leff} h_{right}) is 2 or –2, adjust tree by *rotation* around the node

CSE 373 - SP 04 - AVL Trees 4/7/2004

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

- Outside Cases (require single rotation) : 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α . Inside Cases (require double rotation):
- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

CSE 373 - SP 04 - AVL Trees

Implementation

No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

4/7/2004

CSE 373 - SP 04 - AVLTrees

31

Single Rotation

```
RotateFromRight(n: reference node pointer) {
  p: node pointer;
  p:= n.right;
  n.right:= p.left;
  p.left:= n;
  n:= p
}

You also need to modify the heights or balance factors of n and p

4/7/2004 CSE 373-SP 04-AVLTrees 32
```

Double Rotation

· Implement Double Rotation in two lines.

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 -) If a new balance factor (the difference h_{left} , h_{right}) is 2 or –2, adjust tree by rotation around the node

7/2004 CSE 373 - SP 04 - AVL Trees

Insert in BST

Insert in AVL trees

AVL Tree Deletion

- Similar but more complex than insertion
 - > Rotations and double rotations needed to rebalance
 - > Imbalance may propagate upward so that many rotations may be needed.

CSE 373 - SP 04 - AVLTrees

Pros and Cons of AVL Trees

Arguments for AVL trees:

- Search is O(log N) since AVL trees are always balanced.
 Insertion and deletions are also O(logn)
 The height balancing adds no more than a constant factor to the speed of insertion

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- Asymptotically faster but rebalancing costs time.
 Most large searches are done in database systems on disk and use
- whost large seatches are of in database systems of disk and de-other structures (e.g. B-trees).

 May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

CSE 373 - SP 04 - AVLTrees

