

Readings

- Reading

Goodrich and Tamassia, Chapter 9

Binary Search Tree - Best

Time

- All BST operations are $O(d)$, where d is tree depth
- minimum d is $d=\left\lfloor\log _{2} N\right\rfloor$ for a binary tree with N nodes
, What is the best case tree?
, What is the worst case tree?
Binary Search Tree - Worst Time
- Worst case running time is $\mathrm{O}(\mathrm{N})$
, What happens when you Insert elements in ascending order?
- Insert: 2, 4, 6, 8, 10, 12 into an empty BST
, Problem: Lack of "balance":
- compare depths of left and rightsubtree
, Unbalanced degenerate tree
- So, best case running time of BST operations is $\mathrm{O}(\log \mathrm{N})$

Approaches to balancing trees

- Don't balance
, May end up with some nodes very deep
- Strict balance
, The tree must always be balanced perfectly
- Pretty good balance
, Only allow a little out of balance
- Adjust on access
, Self-adjusting

Balancing Binary Search

 Trees \qquad- Many algorithms exist for keeping binary search trees balanced
, Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
, Splay trees and other self-adjusting trees
, B -trees and other multiway search trees

4/7/2004
CSE 373 - SP 04 -- AVL Trees

AVL - Good but not Perfect

Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
, height(left subtree) - height(right subtree)
- An AVL tree has balance factor calculated at every node
, For every node, heights of left and right subtree can differ by no more than 1
, Store current heights in each node

Height of an AVL Tree

- $N(h) \geq \phi^{h} \quad(\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
, $n \geq N(h)$ (because $N(h)$ was the minimum)
, $n \geq \phi^{h}$ hence $\log _{\phi} n \geq h$ (relatively well balanced tree!!)
, $\mathrm{h} \leq 1.44 \log _{2} \mathrm{n}$ (i.e., Find takes $\mathrm{O}(\operatorname{logn})$)

47/12004
CSE 373-SP 04-- AVLTrees
11

Perfect Balance

- Want a complete tree after every operation , tree is full except possibly in the lower right
- This is expensive
, For example, insert 2 in the tree on the left and then rebuild as a complete tree

Height of an AVL Tree

- $N(h)=$ minimum number of nodes in an AVL tree of height h.
- Basis
, $N(0)=1, N(1)=2$
- Induction
, $\mathrm{N}(\mathrm{h})=\mathrm{N}(\mathrm{h}-1)+\mathrm{N}(\mathrm{h}-2)+1$
- Solution (recall Fibonacci analysis)
, $N(h) \geq \phi^{h} \quad(\phi \approx 1.62)$

Insert and Rotation in AVL Trees
 \qquad

- Insert operation may cause balance factor to become 2 or -2 for some node
, only nodes on the path from insertion point to root node have possibly changed in height
, So after the Insert, go back up to the root node by node, updating heights
, If a new balance factor (the difference $\mathrm{h}_{\text {leff }}$ $\mathrm{h}_{\text {right }}$) is 2 or -2 , adjust tree by rotation around the node

Insertions in AVL Trees

Let the node that needs rebalancing be α.
There are 4 cases:
Outside Cases (require single rotation)

1. Insertion into left subtree of left child of α.
2. Insertion into rightsubtree of right child of α. Inside Cases (require double rotation) :
3. Insertion into rightsubtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation algorithms.

4/7/2004
CSE 373 - SP 04 -- AVL Trees

AVL Insertion: Outside Case

Single Rotation

4/7/2004
CSE 373 - SP 04 -- AVL Trees
32

Double Rotation

- Implement Double Rotation in two lines.

Insert in AVL trees

Insert (T : reference tree pointer, x : element) : 1

case
T.data $=\mathrm{x}$: return ; //Duplicate do nothing
T.data $>\mathrm{x}: \operatorname{Insert}(T$. left, x$)$;
height(T.right)) = 2) (
if (T.left.data > x) then //outside case
else //inside case
= DoubleRotatefromLeft (T);
T.data < X : $\begin{gathered}\text { code similar to the left case }\end{gathered}$
Endcase
1.height := max(height(T.left), height(T.right)) +1;
return;
47/2004

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
, only nodes on the path from insertion point to root node have possibly changed in height
, So after the Insert, go back up to the root node by node, updating heights
, If a new balance factor (the difference $h_{\text {leff }}$ $h_{\text {right }}$) is 2 or -2 , adjust tree by rotation around the node

Example of Insertions in an
\qquad

47/2004
CSE 373 - SP 04 -- AVLTrees
38

Double rotation (inside case)

4/7/2004
CSE 373 - SP 04 -- AVLTrees
40

AVL Tree Deletion

- Similar but more complex than insertion
, Rotations and double rotations needed to rebalance
, Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Search is $O(\log N)$ since $A V L$ trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program \& debug; more space for balance factor
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $\mathrm{O}(\mathrm{N})$ for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

47//2004
CSE 373 - SP 04 -- AVLTrees

