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Directed Graph Algorithms

CSE 373
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Readings

• Reading 
› Goodrich and Tamassia, chapter 12
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Topological Sort

321143
322

326
341370

378

401

421

Problem: Find an order in
which all these courses can 
be taken.

Example: 142 à 143 à 378
à 370 à 321 à 341 à 322
à 326 à 421 à 401

In order to take a course, you must 
take all of its prerequisites first

142
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Given a digraph G = (V, E), find a linear ordering of 
its vertices such that: 

for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

Topological Sort
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A

B
C

F

D E

EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

5/11/2004 CSE 373 SP 04 - Digraph 
Algorithms

6

A

B
C

F

D E

DA EFB C

Any linear ordering in which
an arrow goes to the left
is not a valid solution

Topo sort - bad example

NO!
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Paths and Cycles

• Given a digraph G = (V,E), a path is a 
sequence of vertices v1,v2, …,vk such that:
› (vi,vi+1) in E for 1 < i < k
› path length = number of edges in the path
› path cost = sum of costs of each edge 

• A path is a cycle if :
› k > 1; v1 = vk 

• G is acyclic if it has no cycles.
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Only acyclic graphs can be 
topo. sorted

• A directed graph with a cycle cannot be 
topologically sorted.

A

B
C

F

D E
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Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topo sort algorithm - 1
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Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s) (cyclic graph)
• Topological sort not possible – Halt.

A

B
C

D
Example of a cyclic graph

Topo sort algorithm - 1a
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Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Select

Topo sort algorithm - 1b
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A

B
C

F

D E

Step 2: Delete this vertex of in-degree 0 and all 
its outgoing edges from the graph. Place it in the 
output.

Topo sort algorithm - 2

A
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A

B
C

F

D E

Repeat Step 1 and Step 2 until graph is empty

Select

Continue until done
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A

B
C

F

D E

B

Select B.  Copy to sorted list.  Delete B and its edges.

B



8

5/11/2004 CSE 373 SP 04 - Digraph 
Algorithms

15

A

C

F

D E

B C

Select C.  Copy to sorted list.  Delete C and its edges.

C
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AF

D E

B C D

Select D.  Copy to sorted list.  Delete D and its edges.

D
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AF

E

B C D E F

Select E.  Copy to sorted list.  Delete E and its edges.
Select F.  Copy to sorted list.  Delete F and its edges.

E, F
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A B C D E F

Done

A

B
C

F

D E
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A

B
C

F

D E

2 4

5

54

3

1

2

3

4

5

6

Assume adjacency list
representation

Implementation

A B C D E F
1   2   3   4   5   6Translation

array
value next

5/11/2004 CSE 373 SP 04 - Digraph 
Algorithms

20

0

1

0

2

2

1In-Degree 
array; or add a 
field to array A

Calculate In-degrees

2 4

5

54

3

1

2

3

4

5

6

AD
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Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do 
x := A[i];
while x ≠ null do
D[x.value] := D[x.value] + 1;
x := x.next;

endwhile
endfor
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Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

1
2 3

6

4 5

Maintaining Degree 0 Vertices

0

1

0

2

2

1

2 4

5

54

3

1

2

3

4

5

6

AD
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After each vertex is output, when updating In-Degree array, 
enqueue any vertex whose In-Degree becomes zero

1

Queue 6

Output

2
dequeue enqueue

1
2 3

6

4 5

Topo Sort using a Queue 
(breadth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD
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Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the 

queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree 

became zero
4. If all vertices are output then success, 

otherwise there is a cycle.
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Some Detail

Main Loop
while notEmpty(Q) do
x := Dequeue(Q)
Output(x)
y := A[x];
while y  ≠ null do
D[y.value] := D[y.value] – 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y := y.next;

endwhile
endwhile
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Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)
• Initialize Queue with In-Degree 0 vertices: O(|V|)
• Dequeue and output vertex:

› |V| vertices, each takes only O(1) to dequeue and 
output: O(|V|) 

• Reduce In-Degree of all vertices adjacent to a vertex 
and Enqueue any In-Degree 0 vertices:
› O(|E|)   

• For input graph G=(V,E) run time  =  O(|V| + |E|)
› Linear time!
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After each vertex is output, when updating In-Degree array, 
push any vertex whose In-Degree becomes zero

1

Stack 2

Output

6
pop push

1
2 3

6

4 5

Topo Sort using a Stack 
(depth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD
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Recall Path cost ,Path length
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

4

2 2

2
3

2 2
3

length(p) = 5

cost(p) = 11
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Shortest Path Problems
• Given a graph G = (V, E) and a “source” vertex s

in V, find the minimum cost paths from s to every 
vertex in V

• Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights 
› etc
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Why study shortest path 
problems?

• Traveling on a budget: What is the cheapest 
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
› Vertices are routers and edges are network links with 

different delays.  What is the routing path with 
smallest total delay?

• Shipping: Find which highways and roads to 
take to minimize total delay due to traffic

• etc.
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Unweighted Shortest Path

Problem: Given a “source” vertex s in an unweighted
directed graph 

G = (V,E), find the shortest path from s to all vertices in 
G

A

C

B

D

F H

G

E

Source

Only interested

in path lengths
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Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices 
that can be reached using 0, 1, 2, 3, …, N-1 
edges  (works even for cyclic graphs!)

A

C

B

D

F H

G

E
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Breadth-First Search Alg.
• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once 

// it won’t be enqueued again
while queue is not empty do

X := Dequeue(Q);
for each vertex Y adjacent to X do

if Y is unmarked then
Distance[Y] := Distance[X] + 1;
Previous[Y] := X;//if we want to record paths
Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)
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Example: Shortest Path length

A

C

B

D

F H

G

E

0

Queue Q = C
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Example (ct’d)

A

C

B

D

F H

G

E

0

Queue Q = A D E

1

1

1

Previous
pointer

Indicates the vertex is marked
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Example (ct’d)

A

C

B

D

F H

G

E

0

Q = D E B

1

1

1

2
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Example (ct’d)

A

C

B

D

F H

G

E

0

Q = B G

1

1

1

2

2
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Example (ct’d)

A

C

B

D

F H

G

E

0

Q = F

1

1

1

2

2

3 4
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Example (ct’d)

A

C

B

D

F H

G

E

0

Q = H

1

1

1

2

2

3
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What if edges have weights?

• Breadth First Search does not work anymore 
› minimum cost path may have more edges than 

minimum length path

A

C

B

D

F H

G

E

2 3

2 1

1

4

2

11

93

8

3

Shortest path (length)
from C to A:
CàA (cost = 9)

Minimum Cost 
Path = CàEàDàA
(cost = 8)
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Dijkstra’s Algorithm for 
Weighted Shortest Path

• Classic algorithm for solving shortest 
path in weighted graphs (without 
negative weights)

• A greedy algorithm (irrevocably makes 
decisions without considering future 
consequences)

• Each vertex has a cost for path from 
initial vertex
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Basic Idea of Dijkstra’s
Algorithm 

• Find the vertex with smallest cost that has not 
been “marked” yet.

• Mark it and compute the cost of its neighbors.
• Do this until all vertices are marked.
• Note that each step of the algorithm we are 

marking one vertex and we won’t change our 
decision: hence the term “greedy” algorithm


