
1

Directed Graph Algorithms

CSE 373

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

2

Readings

• Reading
› Goodrich and Tamassia, chapter 12

2

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

3

Topological Sort

321143
322

326
341370

378

401

421

Problem: Find an order in
which all these courses can
be taken.

Example: 142 à 143 à 378
à 370 à 321 à 341 à 322
à 326 à 421 à 401

In order to take a course, you must
take all of its prerequisites first

142

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

4

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

Topological Sort

3

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

5

A

B
C

F

D E

EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

6

A

B
C

F

D E

DA EFB C

Any linear ordering in which
an arrow goes to the left
is not a valid solution

Topo sort - bad example

NO!

4

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

7

Paths and Cycles

• Given a digraph G = (V,E), a path is a
sequence of vertices v1,v2, …,vk such that:
› (vi,vi+1) in E for 1 < i < k
› path length = number of edges in the path
› path cost = sum of costs of each edge

• A path is a cycle if :
› k > 1; v1 = vk

• G is acyclic if it has no cycles.

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

8

Only acyclic graphs can be
topo. sorted

• A directed graph with a cycle cannot be
topologically sorted.

A

B
C

F

D E

5

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

9

Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topo sort algorithm - 1

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

10

Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s) (cyclic graph)
• Topological sort not possible – Halt.

A

B
C

D
Example of a cyclic graph

Topo sort algorithm - 1a

6

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

11

Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Select

Topo sort algorithm - 1b

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

12

A

B
C

F

D E

Step 2: Delete this vertex of in-degree 0 and all
its outgoing edges from the graph. Place it in the
output.

Topo sort algorithm - 2

A

7

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

13

A

B
C

F

D E

Repeat Step 1 and Step 2 until graph is empty

Select

Continue until done

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

14

A

B
C

F

D E

B

Select B. Copy to sorted list. Delete B and its edges.

B

8

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

15

A

C

F

D E

B C

Select C. Copy to sorted list. Delete C and its edges.

C

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

16

AF

D E

B C D

Select D. Copy to sorted list. Delete D and its edges.

D

9

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

17

AF

E

B C D E F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

E, F

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

18

A B C D E F

Done

A

B
C

F

D E

10

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

19

A

B
C

F

D E

2 4

5

54

3

1

2

3

4

5

6

Assume adjacency list
representation

Implementation

A B C D E F
1 2 3 4 5 6Translation

array
value next

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

20

0

1

0

2

2

1In-Degree
array; or add a
field to array A

Calculate In-degrees

2 4

5

54

3

1

2

3

4

5

6

AD

11

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

21

Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
x := A[i];
while x ≠ null do
D[x.value] := D[x.value] + 1;
x := x.next;

endwhile
endfor

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

22

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

1
2 3

6

4 5

Maintaining Degree 0 Vertices

0

1

0

2

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

12

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

23

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

1

Queue 6

Output

2
dequeue enqueue

1
2 3

6

4 5

Topo Sort using a Queue
(breadth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

24

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the

queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree

became zero
4. If all vertices are output then success,

otherwise there is a cycle.

13

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

25

Some Detail

Main Loop
while notEmpty(Q) do
x := Dequeue(Q)
Output(x)
y := A[x];
while y ≠ null do
D[y.value] := D[y.value] – 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y := y.next;

endwhile
endwhile

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

26

Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)
• Initialize Queue with In-Degree 0 vertices: O(|V|)
• Dequeue and output vertex:

› |V| vertices, each takes only O(1) to dequeue and
output: O(|V|)

• Reduce In-Degree of all vertices adjacent to a vertex
and Enqueue any In-Degree 0 vertices:
› O(|E|)

• For input graph G=(V,E) run time = O(|V| + |E|)
› Linear time!

14

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

27

After each vertex is output, when updating In-Degree array,
push any vertex whose In-Degree becomes zero

1

Stack 2

Output

6
pop push

1
2 3

6

4 5

Topo Sort using a Stack
(depth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

28

Recall Path cost ,Path length
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

4

2 2

2
3

2 2
3

length(p) = 5

cost(p) = 11

15

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

29

Shortest Path Problems
• Given a graph G = (V, E) and a “source” vertex s

in V, find the minimum cost paths from s to every
vertex in V

• Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights
› etc

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

30

Why study shortest path
problems?

• Traveling on a budget: What is the cheapest
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
› Vertices are routers and edges are network links with

different delays. What is the routing path with
smallest total delay?

• Shipping: Find which highways and roads to
take to minimize total delay due to traffic

• etc.

16

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

31

Unweighted Shortest Path

Problem: Given a “source” vertex s in an unweighted
directed graph

G = (V,E), find the shortest path from s to all vertices in
G

A

C

B

D

F H

G

E

Source

Only interested

in path lengths

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

32

Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, …, N-1
edges (works even for cyclic graphs!)

A

C

B

D

F H

G

E

17

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

33

Breadth-First Search Alg.
• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once

// it won’t be enqueued again
while queue is not empty do

X := Dequeue(Q);
for each vertex Y adjacent to X do

if Y is unmarked then
Distance[Y] := Distance[X] + 1;
Previous[Y] := X;//if we want to record paths
Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

34

Example: Shortest Path length

A

C

B

D

F H

G

E

0

Queue Q = C

18

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

35

Example (ct’d)

A

C

B

D

F H

G

E

0

Queue Q = A D E

1

1

1

Previous
pointer

Indicates the vertex is marked

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

36

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = D E B

1

1

1

2

19

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

37

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = B G

1

1

1

2

2

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

38

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = F

1

1

1

2

2

3 4

20

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

39

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = H

1

1

1

2

2

3

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

40

What if edges have weights?

• Breadth First Search does not work anymore
› minimum cost path may have more edges than

minimum length path

A

C

B

D

F H

G

E

2 3

2 1

1

4

2

11

93

8

3

Shortest path (length)
from C to A:
CàA (cost = 9)

Minimum Cost
Path = CàEàDàA
(cost = 8)

21

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

41

Dijkstra’s Algorithm for
Weighted Shortest Path

• Classic algorithm for solving shortest
path in weighted graphs (without
negative weights)

• A greedy algorithm (irrevocably makes
decisions without considering future
consequences)

• Each vertex has a cost for path from
initial vertex

5/11/2004 CSE 373 SP 04 - Digraph
Algorithms

42

Basic Idea of Dijkstra’s
Algorithm

• Find the vertex with smallest cost that has not
been “marked” yet.

• Mark it and compute the cost of its neighbors.
• Do this until all vertices are marked.
• Note that each step of the algorithm we are

marking one vertex and we won’t change our
decision: hence the term “greedy” algorithm

