

Readings

- Reading

Goodrich and Tamassia, chapter 12

Topological Sort

Given a digraph $G=(V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

Paths and Cycles

- Given a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a path is a sequence of vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ such that:
, $\left(v_{i}, v_{i+1}\right)$ in E for $1 \leq i<k$
, path length = number of edges in the path
, path cost = sum of costs of each edge
- A path is a cycle if:
, $\mathrm{k}>1 ; \mathrm{v}_{1}=\mathrm{v}_{\mathrm{k}}$
- G is acyclic if it has no cycles.

Only acyclic graphs can be topo. sorted

- A directed graph with a cycle cannot be topologically sorted.

5/11/2004
CSE 373 SP 04 - Digraph Algorithms

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
-The "in-degree" of these vertices is zero

5/11/2004

Topo sort algorithm - 1b
Step 1: Identify vertices that have no incoming edges - Select one such vertex

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

5/11/2004
CSE 373 SP 04 - Digraph
12

Topological Sort Algorithm

1. Store each vertex's In-Degree in an array D
2. Initialize queue with all "in-degree=0" vertices
3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
5/11/2004
CSE 373 SP 04 - Digraph 24

Some Detail

```
Main Loop
    while notEmpty(Q) do
        x := Dequeue(Q)
        Output (x)
        y := A[x];
        while y f null do
            D[y.value] := D[y.value] - 1;
                if D[y.value] = 0 then Enqueue(Q,y.value);
                y := y.next;
            endwhile
    endwhile
```


Topological Sort Analysis

- Initialize In-Degree array: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Initialize Queue with In-Degree 0 vertices: $\mathrm{O}(|\mathrm{V}|)$
- Dequeue and output vertex:
$|\mathrm{V}|$ vertices, each takes only $\mathrm{O}(1)$ to dequeue and output: $\mathrm{O}(|\mathrm{V}|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
, $\mathrm{O}(|\mathrm{E}|)$
- For input graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ run time $=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
, Linear time!
5/11/2004
CSE 373 SP 04 - Digraph Algorithms

Recall Path cost , Path length

- Path cost: the sum of the costs of each edge
- Path length: the number of edges in the path
, Path length is the unweighted path cost

Why study shortest path probtems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X ?
- Optimizing routing of packets on the internet:
, Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic
- etc.

5/11/2004	CSE 373 SP 04 - Digraph	30

Breadth-First Search Solution

- Basic Idea: Starting at node s, find vertices that can be reached using $0,1,2,3, \ldots, N-1$ edges (works even for cyclic graphs!)

Breadth-First Search Alg.

- Uses a queue to track vertices that are "nearby"
- source vertex is \mathbf{s}

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once
// it won't be enqueued again
while queue is not empty do
x := Dequeue (Q);
for each vertex Y adjacent to X do
if Y is unmarked then
Distance[Y] := Distance[X] + 1; Previous[Y] := X;//if we want to record paths Enqueue (Q,Y); Mark(Y);

- Running time $=\mathrm{O}(|V+|E|)$

5/11/2004 CSE 373 SP 04 - Digraph

Example (ct'd)

\qquad
\qquad

Example (ct'd)

5/11/2004
CSE 373 SP 04 - Digraph Algorithms

What if edges have weights?

- Breadth First Search does not work anymore
, minimum cost path may have more edges than minimum length path

Shortest path (length)
from C to A :
$C \rightarrow A(\operatorname{cost}=9)$
Minimum Cost
Path $=\mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$
(cost =8)
5/11/2004

Basic Idea of Dijkstra's

Algorithm

- Find the vertex with smallest cost that has not been "marked" yet.
- Mark it and compute the cost of its neighbors.
- Do this until all vertices are marked.
- Note that each step of the algorithm we are marking one vertex and we won't change our decision: hence the term "greedy" algorithm
- Each vertex has a cost for path from initial vertex

5/11/2004

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences) CSE 373 SP 04 - Digraph

CSE 373 SP 04 - Digraph 42

