Directed Graphs (Part Il)

CSE 373
Data Structures

Dijkstra’s Shortest Path

— Algorthm————

» |nitialize the cost of s to 0, and all the rest of the
nodes to ¥

* Initialize set S to be A&
> S is the set of nodes to which we have a shortest path

 While S is not all vertices

> Select the node A with the lowest cost that is notin S
and identify the node as now being in S

> for each node B adjacent to A
« if cost(A)+cost(A,B) < B’s currently known cost
— set cost(B) = cost(A)+cost(A,B)
— set previous(B) = A so that we can remember the path
5/11/2004 CSE 373 SP 04 - Digraphs 2 2

Example: Initialization

0 ¥

Cost(source) =0 ~, Cost(all vertices

but source) = ¥

Pick vertex not in S with lowest cost.

5/11/2004 CSE 373 SP 04 - Digraphs 2

Example: Update Cost

Cost(w) = 2 @ T Q;)

Cost(y) =1

5/11/2004 CSE 373 SP 04 - Digraphs 2

Example: pick vertex with

Pick vertex not in S with lowest cost, i.e., v,

5/11/2004 CSE 373 SP 04 - Digraphs 2

Example: update neighbors

Cost(y)=1+2=3 @ T Q;)

Cost(y)=1+2=3
Cost(y)=1+8=9
Cost(w)=1+4=5

5/11/2004 CSE 373 SP 04 - Digraphs 2

Example (Ct'd)

Pick vertex not in S with lowest cost (v,) and update neighbors

Note : cost(v,) not
updated since already
in S and cost(v;) not

- = updated since it is
larger than previously
computed

5/11/2004 CSE 373 SP 04 - Digraphs 2 7

Example: (ct'd)

Pick vertex not in S (v) with lowest cost and update neighbors

2
7

No updating

5/11/2004 CSE 373 SP 04 - Digraphs 2 8

Example: (ct'd)

Pick vertex not in S with lowest cost (v;) and update neighbors

5/11/2004 CSE 373 SP 04 - Digraphs 2 9

Example: (ct'd)

Pick vertex not in S with lowest cost (v) and update neighbors

(4]
[
/
o

Previous cost
6 b

»
Cost(y) = min (8, 5+1) =6

5/11/2004 CSE 373 SP 04 - Digraphs 2 10

Example (end)

Pick vertex not in S with lowest cost (v;) and update neighbors

5/11/2004 CSE 373 SP 04 - Digraphs 2 11

Data Structures

» Adjacency Lists
previous cost Priority)ueue pointers

<4

L]

cost

adj next

A
Q
<

viviviy

vivlylyly]

 kkkKkKEKkKEkEPbH«

LI LY

~NoO o, WN B

.

Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)
5/11/2004 CSE 373 SP 04 - Digraphs 2 12

vl

Time Complexity

n vertices and m edges

Initialize data structures O(n+m)

Find min cost vertices O(n log n)

> n delete mins

Update costs O(m log n)

> Potentially m updates

Update previous pointers O(m)

> Potentially m updates

e Total time O((n + m) log n) - very fast.

5/11/2004 CSE 373 SP 04 - Digraphs 2 13

Correctness

Dijkstra’s algorithm is an example of a greedy
algorithm

Greedy algorithms always make choices that
currently seem the best

> Short-sighted — no consideration of long-term or global
issues

> Locally optimal does not always mean globally optimal
In Dijkstra’s case — choose the least cost node,
but what if there is another path through other
vertices that is cheaper?

5/11/2004 CSE 373 SP 04 - Digraphs 2 14

“Cloudy” Proof: The Idea

Next shortest path from

Least cost node e
/" inside the known cloud

THE KNOWN
CLOUD ¢

(2

competitor @

Source

e If the path to G is the next shortest path, the path to P must be
at least as long. Therefore, any path through P to G cannot be
shorter!

5/11/2004 CSE 373 SP 04 - Digraphs 2 15

Inside the Cloud (Proof)

» Everything inside the cloud has the correct
shortest path

e Proof is by induction on the number of nodes
in the cloud:

> Base case: Initial cloud is just the source s with
shortest path 0.

> Inductive hypothesis: Assume that a cloud of k-1
nodes all have shortest paths.

> Inductive step: choose the least cost node G -
has to be the shortest path to G (previous slide).
Add k-th node G to the cloud.

5/11/2004 CSE 373 SP 04 - Digraphs 2 16

All Pairs Shortest Path

» Given a edge weighted directed graph G =
(V,E) find for all u,v in V the length of the
shortest path from u to v. Use matrix
representation.
C1 2 3 4 5 6

1o 2 : 1 :

21 0 : 310 :

314 : 0 : = 5 :

41 : 2 0 2 8 4
5 0 : 6
6 o0

7 1 0

siyz00a - = INNIY cse 373 sp 04- Digraphs2 17

A (simpler) Related Problem:
. |

» Given a digraph G(V,E) the transitive
closure is a digraph G’(V',E’) such that
> V' =V (same set of vertices)
> If (v, Viyq,...,V) is a path in G, then (v, v,)
Is an edge of E’

5/11/2004 CSE 373 SP 04 - Digraphs 2 18

Unweighted Digraph Boolean
. .

» C is called the connectivity matrix

1 = connected
0 = not connected

C1 2 3 4 5 6 7
10 1 01 0 0 0
210 0 01 1 0 O
31 0 0 0 O 1 O
410 0 1 0 1 1 1
50 0 0 0 0 O 1
6 ([0 O OO O O O
7 \O 0 0 0 0 1 O
5/11/2004 CSE 373 SP 04 - Digraphs 2 19
Transitive Closure
Cnan 2 3 4 5 6 7
111 1 1 1 1 1 1 e
201 1111 1 1 g }Q
31 1 1 1 1 1 1
A
g (1) (1) (1) (1) (1) i 1 On the graph, we63how only the edges
6 (0 0 0O 0 0 O O |added with 1 as origin. The matrix represents
70 0 O 0O O 1 O .
the full transitive closure.
5/11/2004 CSE 373 SP 04 - Digraphs 2 20

10

Finding Paths of Length 2

// First initialize C to all zero //

Lengt h2

forgk = {1 ton path of length 2

for i =1 to n do @® (O (D
for j =1ton do

} i, j] :=Ci,jl E (i, kI ¢ dk,jl);

where C is Boolean And (&%) and E is Boolean OR (]|])
This means if there is an edge fromi to k

AND an edge fromk to j, then there is a path

of length 2 between i and j.

Columm k (di,Kk]) represents the predecessors of k
Row k (Jk,j]) represents the successors of k

5/11/2004 CSE 373 SP 04 - Digraphs 2 21

Paths of Length 2

O

Time O(n3)

SoocoorooRr

~No abhwNE

OO O0OO0OOCOrFrN
OO0 O0OFrOoOO0OO0OW
OO O0OO0OOFrF A
OO0 OoOFrOoOrou
POORPFPOOO
cNeN N NeNeNe RN

~

C2

(ol N elNoNoll

OO WNPE

.0
5/11/5004°

WOORrORFrEFN

cocoocoroON
OCoocO0COoORrREFLRW
coocorOR AN
OcocococorkrO
(9]

WDDorrorro

373 SP 04 - Digraphs 2 22

11

Transitive Closure

* Union of paths of length O, length 1,
length 2, ..., length n-1.

> Time complexity n * O(n®) = O(n?)

» There exists a better (O(n3)) algorithm:

Warshall's algorithm

5/11/2004 CSE 373 SP 04 - Digraphs 2

23

Warshall Algorithm

P—0—Q
Transitived osure {

for k =1tondo // kis the step nunber //
for i =1 ton do
for j =1ton do
Cli,j] «=di,j] E (i, k] C Jk,j]);
} or and

where Ci,j] starts as the original
connectivity matrix and i,j] is updated
after step k if a new path fromi to j
through k is found.

5/11/2004 CSE 373 SP 04 - Digraphs 2

24

12

Proof of Correctness

Prove: After the k-th time through the
loop, CIi,j] =1 if there is a path from i to j
that only passes through vertices
numbered 1,2,...,k (except for the initial
edges)

e Base case: k=1. C[i,j] =1 for the initial
connectivity matrix (path of length 0)
and C[i,j] = 1 if there is a path (i,1,))

5/11/2004 CSE 373 SP 04 - Digraphs 2 25

Cloud Argument

Vertices numbered
1,2,....k-1

5/11/2004 CSE 373 SP 04 - Digraphs 2 26

13

Inductive Step

* Inductive Hypothesis: Suppose after step k-1
that CJi,j] contains a 1 if there is a path from i
to j through vertices 1,...,k-1.

* Induction: Consider step k, which does
qi.jl == di,jl E(di Kkl ¢ dkjl);

Either Cl[i,j] is already 1 or there is a new path
through vertex k, which makes it 1.

5/11/2004 CSE 373 SP 04 - Digraphs 2 27

Back to Weighted graphs:
. .

» CJi,J] = the cost of the edge (i,))
> CIJi,i] = 0 because no cost to stay where you are
> CIi,J] = infinity (%) if no edge from i to j.

3 4 5 6 7
1 :

1l
0
: 3 10

oON DN

4

0 2 4
0 : 6

NouRWNE O
o

. = = = = 1 0

5/11/2004 CSE 373 SP 04 - Digraphs 2 28

14

Floyd — Warshall Algorithm

/I Start with the cost matrix C

Al'l _Pairs_Shortest Path {
for k =1ton do

for i =1 ton do
for j =1ton do
qi.j] :=mn(di,j], di,k] + Jdk,jJ]);
} old cost updated new cost
Note x + : = : by definition (: is infinity)

On termination Cfi,j] is the length of the shortest path from i to j.

5/11/2004 CSE 373 SP 04 - Digraphs 2 29

The Computation

Ca1 2 3 4 5 6 7 Ci1 2 3 4 5 6 7
110 2 1 110 2 3 1 3 6 5
2 0 310 219 0 5 3 5 8 7
314 : 0 : 5 = 3|4 6 0 5 4 5 6
4 2 0 2 8 4 416 8 2 0 2 5 4
5 0 : 6 51: : : : 0 7 6
6 : 0 6 |: : 0 :

7 \ 1 0 7 \: 1 O

5/11/2004 CSE 373 SP 04 - Digraphs 2 30

15

Time Complexity of All Pairs
_ ShortestPath

* nis the number of vertices

e Three nested loops. O(n3)
> Shortest paths can be found too (see the book).
* Repeated Dijkstra’s algorithm
> O(n(n +m)log n) (= O(n® log n) for dense graphs).
> Run Dijkstra starting at each vertex.

> But, Dijkstra also gives the shortest paths not just
their lengths.

5/11/2004 CSE 373 SP 04 - Digraphs 2 31

16

