Disjoint Set Operations:
“UNION-FIND” Method

CSE 373
Data Structures

Reading

* Reading
> Either: (1, which is preferred) pp.520-528
in Goodrich and Tamassia, 3rd ed., or
> (2) read a combination of pp.461-464

in the 2nd edition plus the online item
linked from our home page.

5/13/2004 CSE 373 SP 04-- Disjoint Set 2
Operations

Equivalence Relations

» Arelation R is defined on set S if for
every pair of elements a, bl S, aR bis
either true or false.

» An equivalence relation is a relation R
that satisfies the 3 properties:
> Reflexive: a R afor all a S
> SymmetriccaRbiffbRa;a, b l's
> Transitive:aRband b R cimpliesaR ¢

5/13/2004 CSE 373 SP 04-- Disjoint Set 3
Operations

Equivalence Classes

< Given an equivalence relation R, decide
whether a pair of elements a, b | Siis
suchthata R b.

¢ The equivalence class of an element a
is the subset of S of all elements
related to a.

¢ Equivalence classes are disjoint sets

1 4 5
5/13/2004 3 CSE 373 SP 04-- Disjoint Set 4
Operations

Dynamic Equivalence

Probtem
« Starting with each element in a singleton set,
and an equivalence relation, build the
equivalence classes
* Requires two operations:

> Find the equivalence class (set) of a given
element

> Union of two sets
¢ lItis a dynamic (on-line) problem because the

sets change during the operations and Find
must be able to cope!

5/13/2004 CSE 373 SP 04-- Disjoint Set 5
Operations

Disjoint Union - Find

» Maintain a set of pairwise disjoint sets.
> {3,5,7}, {4,2,8}, {9}, {1,6}

« Each set has a unique name, one of its
members

> {3.5,7},{4.2,8}, {9}, {1,6}

5/13/2004 CSE 373 SP 04-- Disjoint Set 6
Operations

Union

* Union(x,y) — take the union of two sets
named x and y
> {3,5,7},{4.2.8}, {9}, {16}
> Union(5,1)
{3.5,7,1,6}, {4,2,8}, {9},

5/13/2004 CSE 373 SP 04-- Disjoint Set
Operations

Find

 Find(x) — return the name of the set
containing Xx.
> {3,5,7,1,6}, {4,2.8}, {9,
> Find(1) =5
> Find(4) =8
> Find(9) = ?

5/13/2004 CSE 373 SP 04-- Disjoint Set
Operations

An Application

¢ Build a random maze by erasing edges.

5/13/2004 CSE 373 SP 04-- Disjoint Set
Operations

An Application (ct’d)

¢ Pick Start and End

Start

End

5/13/2004 CSE 373 SP 04-- Disjoint Set 10
Operations

An Application (ct'd)

* Repeatedly pick random edges to delete.

Stapt—

&=nd

5/13/2004 CSE 373 SP 04-- Disjoint Set 11
Operations

Desired Properties

* None of the boundary is deleted
« Every cell is reachable from every other
cell.

 There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.

5/13/2004 CSE 373 SP 04-- Disjoint Set 12
Operations

A Cycle (we don’'t want that)

Start |

End

5/13/2004 CSE 373 SP 04-- Disjoint Set 13
Operations

A Good Solution

Start

End

5/13/2004 CSE 373 SP 04-- Disjoint Set 14
Operations

Good Solution : A Hidden

Tropn
TCC

Stan C\@

5/13/2004 CSE 373 SP 04-- Disjoint Set 15
Operations

End

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4}.... {36} } each cellis unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... }60 edges total.

Start 3 12 I3 l4 |5 |6

Z 8 9 0 1 2

3 [14 15 16 107 18

9 10 1 2 3 4

BS 26 P7 P8 PO 0

Bl 132 R3 R4 RS RA End

5/13/2004 CSE 373 SP 04-- Disjoint Set 16
Operations

Basic Algorithm

* S = set of sets of connected cells
¢ E = set of edges

2 Py o ekt "
viaze—=-setrormazeeagestany-empty

While there is more than one setin S
pick a random edge (x,y) and remove from E
u = Find(x); v := Find(y);
ifut vthen
Union(u,v) //knock down the wall between the cells (cells in
llthe same set are connected)
else
add (x,y) to Maze //don’'t remove because there is already
/I a path between x and y

ATl femaining members Of E together With Maze form the maze
5/13/2004 CSE 373 SP 04-- Disjoint Set 17
Operations

Example Step

Pick (8,14) S
| {1,2,2,89,13,19}
{3
Start +—> 3% 5 G {4}

5

7 g0 11 2 %é

13 4 fiI5 po—r7—s %»H}

t—po 2r—p>—p3 24 {12
{14,20,26,27}

Ps—p6—27—26—>29 36— {15,16,21}

+—32—33—34—35—36—End
{22,23,24,29,30,32

5/13/2004 CSE 373 SP 04-- Disjoint Set 3313_4v35v36} 18

Operations

Example

S s

{1,2,7,8,9,13,19}) {1,2,7,8,9,13,19,14,20 26,27}

{34 &=———Find(8)=7 @

4 ind(14)=20 (3

{5} —_—

g Union(7,20) ~ {6}

{1g} {10

{1117 {1110

(13)

{14,20,26,27} {15,16,21}

{15,16,21} o

: (22,23,24,29,39,32

{22,23,24,29,39,32 33.34.35.36)
33,34,35,36} =

5/13/2004 CSE 373 SP 04-- Disjoint Set 19

Operations

Example
Pick (19,20) S
{1,2,2,89,13,19
14,20,26,27}
Start 1 2 | 3 |14 |5 |6 3
—— 4
7 8 9 0 1 p2 %5}}
{&
i3 pa p5 16 fi7 [8 ot
ho po p1 P2 23 pa {11,173
F— {12
bs ps 27 P8 |29 30 {15,16,21}
BL B2 33 34 35 36 End |
{22,23,24,29,39,32
5/13/2004 CSE 373 SP 04-- Disjoint Set 3313_4‘135136} 20

Operations

Example at the End

S
{1,2,34586,7,... 36}
Start 2|13 |[a 5 6
E
7 .8 1 |12 Maze
13 |14 15 16 17 |18
20 22 23 124
25 26 27 28 |29
End
5/13/2004 CSE 373 SP 04-- Disjoint Set 21

Operations

Up-Tree for DU/F

Initial state p Q Q Q Q p Q
Intermediate p p

. ; >
state

Roots are the names of each set.

5/13/2004 CSE 373 SP 04-- Disjoint Set 22
Operations

Find Operation

¢ Find(x) follow x to the root and return the root
(which is the name of the class).

Find(6) = 7 6

5/13/2004 CSE 373 SP 04-- Disjoint Set 23
Operations

Union Operation

 Union(i,j) - assuming i and j roots, point i

to j.
({/’g\ Union(1,7)
R R
2 (g 4
6
5/13/2004 CSE 373 SP 04-- Disjoint Set 24

Operations

Simple Implementation

* Array of indices (Up][i] is parent of i)
Up [x] = 0 means
12 3 45 617
w [o]1fof7]7]s [o]

@© @
b é
é

5/13/2004 CSE 373 SP 04-- Disjoint Set

Union

Operations

Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
U[x] :=y
}
Constant Time!
5/13/2004 CSE 373 SP 04-- Disjoint Set 26

Operations

Find
« Design Find operator ED:‘:‘:‘:D
UpP

> Recursive version

> lterative version %
Find(up[] : integer array, x : integer) : integer {
/lprecondition: x is in the range 1 to size//
?2??
} if up[x] = O then return x
else
5/13/2004 CSE 373 SP 04-- Disjoint Set 27

Operations

A Bad Case
00 L. O

Union(1,2)
Dp O.. O
p Uni?n(2,3)

/p Union(n-1,n)

Find(1) n steps!!

5/13/2004 CSE 373 SP 04-- Disjoint Set 28

Weighted Union

« Weighted Union (weight = number of nodes)
> Always point the smaller tree to the root of the

larger tree
m W-Union(1,7)
2 1. 1 3 g}{‘%
4
CSE 373 SP 04-- Disjoint Set 29
Operations

5/13/2004

Operations
Example Again
000. 9
O O Union(1,2)
Lo
1 O Union(2,3)
N n
1 3 '
Union(n-1,n)
Zv\
-
1 8 seem Find(1) constant time
5/13/2004 CSE 373 SP 04-- Disjoint Set 30

Operations

Analysis of Weighted Union

« With weighted union an up-tree of height h
has weight at least 2".

¢ Proof by induction
> Basis: h = 0. The up-tree has one node, 2° = 1
> Inductive step: Assume true for all h’ < h.

T W(T,) 2 W(T,) 2“2”'1
Minimum weight T
up-tree of height h h1
formed by even J—
weighted unions 19987 .q5 5 hfoges

5/13/2004 CSE 373 SP 04-- Disjoint Set 31
Operations

Weighted Induction
union hypothesis

W(T) 3 201+ 201 = 2h

Analysis of Weighted Union

* Let T be an up-tree of weight n formed
by weighted union. Let h be its height.

e n>2h

* log,n>h

Find(x) in tree T takes O(log n) time.

¢ Can we do better?

5/13/2004 CSE 373 SP 04-- Disjoint Set 32
Operations

Worst Case for Weighted

Lnip
1155

1T LILJ

n/2 Weighted Unions

183338

n/4 Weighted Unions

5/13/2004 CSE 373 SP 04-- Disjoint Set 33
Operations

Example of Worst Cast (cont’)

Aftern -1 =n/2 + n/4 + ...+ 1 Weighted Unions
?’% ?b Iogln
~

If there are n = 2 nodes then the longest
path from leaf to root has length k.

Find

5/13/2004 CSE 373 SP 04-- Disjoint Set 34
Operations

Elegant Array Implementation

6
T12T3[415 167
up OIL 10 717 15 [0 Cansavetheextra
. space by storing the
weight |2 1 4] complement of weight
in the space reserved
up2 for the root
5/13/2004 CSE 373 SP 04-- Disjoint Set 35
Operations

Weighted Union

W Union(i,j : index){
/1i and j are roots//

wi = weight[i];

W o= weight[j];

if wi <w then

up[i] :=j;

veight[j] i= wi + w;
el se

up[j] :=i;

weight[i] (= w +w;

5/13/2004 CSE 373 SP 04-- Disjoint Set 36
Operations

Path Compression

¢ On a Find operation point all the nodes on the
search path directly to the root.

) 2 %
& G§ PC-Find(3) IO, é @)
G{i 8o e

Self-Adjustment Works

<

PC-Find(x)
5

I4444444

5/13/2004 CSE 373 SP 04-- Disjoint Set 38
Operations

Path Compression Find

PC-Find(i : index) {
ro=i;
while up[r] * 0 do //find root//
roo=up[r];
if i tr then //conpress path//
k o= up[i];
while k 1 r do
up[i] :=r;
ii=k;
k :=u
return(r)

}

5/13/2004 CSE 373 SP 04-- Disjoint Set 39
Operations

5/13/2004 CSE 373 SP 04-- Disjoint Set 40
Operations

Disjoint Union / Find
i - | . —

» Worst case time complexity for a W-
Union is O(1) and for a PC-Find is
O(log n).

» Time complexity for m 3 n operations on
n elements is O(m log* n) where log* n
is a very slow growing function.

> log * n < 7 for all reasonable n. Essentially
constant time per operation!

5/13/2004 CSE 373 SP 04-- Disjoint Set 41
Operations

Amortized Complexity

« For disjoint union / find with weighted
union and path compression.
> average time per operation is essentially a
constant.
> worst case time for a PC-Find is O(log n).
< An individual operation can be costly,
but over time the average cost per
operation is not.

5/13/2004 CSE 373 SP 04-- Disjoint Set 42
Operations

Find Solutions

Recursive

Find(up[] : integer array, x : integer) integer {
Ilprecondition: x is in the range 1 to size//

if up[x] = O then return x

el se return Find(up,up[x]);

}
Iterative
Find(up[] : integer array, x : integer) integer {

/lprecondition: x is in the range 1 to size//
while up[x] * 0 do

x 1= up[x];
return x;
}

5/13/2004

CSE 373 SP 04-- Disjoint Set
Operations

