Graph Terminology

CSE 373
Data Structures

Reading

- Reading
, Goodrich and Tamassia, Chapter 12

What are graphs?

- Yes, this is a graph....

- But we are interested in a different kind of "graph"

Graphs

- Graphs are composed of
, Nodes (vertices)
, Edges (arcs)

Varieties

- Nodes
, Labeled or unlabeled
- Edges
, Directed or undirected
, Labeled or unlabeled

Motivation for Graphs

- Consider the data structures we have looked at so far...

- Linked list: nodes with 1 incoming edge +1 outgoing edge
- Binary trees/heaps: nodes with 1 incoming edge +2 outgoing edges
- B-trees: nodes with 1 incoming edge + multiple outgoing edges

Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems...

Program statements

```
x1=q+y* z
x2=y*z-q
```


common subexpression eliminated:

Nodes = symbols/operators
Edges = relationships

Terminology

Traffic Flow on Highways

Graph Definition

- A graph is simply a collection of nodes plus edges
, Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
, V is a set of vertices or nodes
, E is a set of edges that connect vertices

Graph Example

- Here is a directed graph $G=(V, E)$
, Each edge is a pair $\left(v_{1}, v_{2}\right)$, where v_{1}, v_{2} are vertices in V
, $V=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$

Directed vs Undirected Graphs

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ matters, the graph is directed (also called a digraph): $\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)$

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ does not matter, the graph is called an undirected graph: in this case, (v_{1}, $\left.v_{2}\right)=\left(v_{2}, v_{1}\right)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u, v\}$ is an edge in G
, edge $e=\{u, v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
, a self-loop counts twice (both ends count)
, denoted with $\operatorname{deg}(\mathrm{v})$

Undirected Terminology

Directed Terminology

- Vertex u is adjacent to vertex vin a directed graph G if (u, v) is an edge in G
, vertex u is the initial vertex of (u, v)
- Vertex v is adjacent from vertex u
, vertex v is the terminal (or end) vertex of (u, v)
- Degree
, in-degree is the number of edges with the vertex as the terminal vertex
, out-degree is the number of edges with the vertex as the initial vertex

Directed Terminology

Handshaking Theorem

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph with $|E|=e$ edges. Then

$$
2 \mathrm{e}=\sum_{\mathrm{v} \in \mathrm{~V}} \operatorname{deg}(\mathrm{v}) \quad \text { Add up the degrees of all vertices. }
$$

- Every edge contributes +1 to the degree of each of the two vertices it is incident with
, number of edges is exactly half the sum of deg(v)
, the sum of the deg(v) values must be even

Graph Representations

- Space and time are analyzed in terms of:
- \quad Number of vertices $=\mid V$ and
- Number of edges $=|E|$
- There are at least two ways of representing graphs:
- The adjacency matrix representation
- The adjacency list representation

Adjacency Matrix

$M(v, w)=\left\{\begin{array}{l}1 \text { if }(v, w) \text { is in } \mathrm{E} \\ 0 \text { otherwise }\end{array}\right.$

$$
\text { Space }=\mid V^{2}
$$

Adjacency List

For each v in $V, L(v)=$ list of w such that (v, w) is in E

Adjacency List for a Digraph

For each v in $V, L(v)=$ list of w such that (v, w) is in E

