Graph Terminology

CSE 373
Data Structures

Reading

- Reading
 - Goodrich and Tamassia, Chapter 12

4/22/2004

CSE 373 SP 04 -- Graph Terminology

What are graphs?

• Yes, this is a graph....

 But we are interested in a different kind of "graph"

4/22/2004

CSE 373 SP 04 -- Graph Terminology 3

Graphs

- Graphs are composed of
 - Nodes (vertices)
 - › Edges (arcs)

4/22/2004

CSE 373 SP 04 -- Graph Terminology

Varieties

- Nodes
 - > Labeled or unlabeled
- Edges
 - Directed or undirected
 - > Labeled or unlabeled

4/22/2004

CSE 373 SP 04 -- Graph Terminology 5

Motivation for Graphs

- Consider the data structures we have looked at so far...
- <u>Linked list</u>: nodes with 1 incoming edge + 1 outgoing edge
- <u>Binary trees/heaps</u>: nodes with 1 incoming edge + 2 outgoing edges
- B-trees: nodes with 1 incoming edge
 + multiple outgoing edges

4/22/2004

CSE 373 SP 04 -- Graph Terminology

Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems...

4/22/2004

CSE 373 SP 04 -- Graph Terminology

Program statements

x1=q+y*zx2=y*z-qNaive: y*z calculated twice common subexpression eliminated: Nodes = symbols/operators

Edges = relationships

4/22/2004 CSE 373 SP 04 -- Graph Terminology

12

Precedence

- $\mathbf{S}_{\mathbf{1}}$ a=0;
- b=1;
- c=a+1
- d=b+a;
- S₅ e=d+1;
- e=c+d;

Which statements must execute before S₆? S_1, S_2, S_3, S_4

Nodes = statements Edges = precedence requirements

4/22/2004 CSE 373 SP 04 -- Graph Terminology

Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - > V is a set of vertices or nodes
 - > E is a set of edges that connect vertices

4/22/2004

CSE 373 SP 04 -- Graph Terminology 15

Graph Example

- Here is a directed graph G = (V, E)
 - > Each <u>edge</u> is a pair (v_1, v_2) , where v_1, v_2 are vertices in V
 - $V = \{A, B, C, D, E, F\}$

E = {(A,B), (A,D), (B,C), (C,B), (C,E), (D,E)}

4/22/2004

CSE 373 SP 04 -- Graph Terminology

Directed vs Undirected Graphs

 If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called a digraph): (v₁, v₂) ≠ (v₂, v₁)

If the order of edge pairs (v₁, v₂) does not matter, the graph is called an undirected graph: in this case, (v₁, v₂) = (v₂, v₁)

4/22/2004

CSE 373 SP 04 -- Graph Terminology 17

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G
 - o edge e = {u,v} is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - denoted with deg(v)

4/22/2004

CSE 373 SP 04 -- Graph Terminology

Undirected Terminology

4/22/2004 CSE 373 SP 04 -- Graph Terminology 19

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - vertex u is the initial vertex of (u,v)
- · Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

4/22/2004

CSE 373 SP 04 -- Graph Terminology

Directed Terminology

B adjacent to C and C adjacent from B

4/22/2004 CSE 373 SP 04 -- Graph
Terminology

Handshaking Theorem

 Let G=(V,E) be an undirected graph with |E|=e edges. Then

$$2e = \sum_{v \in V} deg(v)$$
 Add up the degrees of all vertices.

- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - > number of edges is exactly half the sum of deg(v)
 - > the sum of the deg(v) values must be even

4/22/2004 CSE 373 SP 04 -- Graph 22 Terminology

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = | V | and
 - Number of edges = |E|
- There are at least two ways of representing graphs:
 - The *adjacency matrix* representation
 - The adjacency list representation

4/22/2004

CSE 373 SP 04 -- Graph Terminology

