Graph Terminology

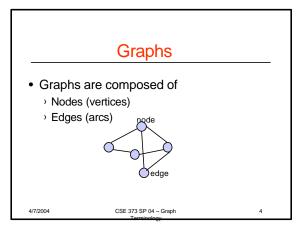
CSE 373 Data Structures

Reading

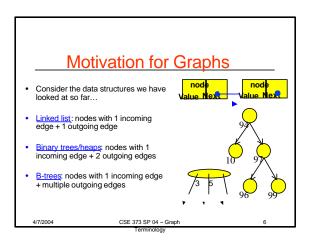
- Reading
 - › Goodrich and Tamassia, Chapter 12

4/7/2004 CSE 373 SP 04 - Graph Terminology

• Yes, this is a graph.... • Yes, this is a graph.... • But we are interested in a different kind of "graph" 4/7/2004 CSE 373 SP 04 - Graph 3



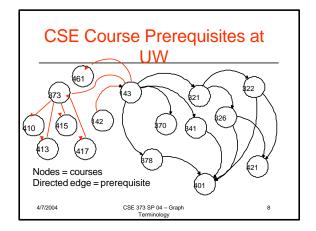
• Nodes • Labeled or unlabeled • Edges • Directed or undirected • Labeled or unlabeled

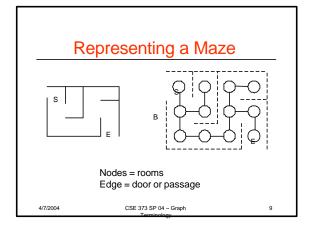


Motivation for Graphs

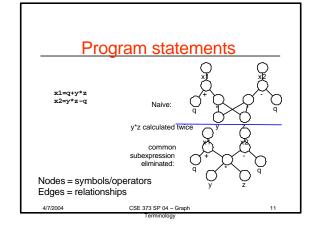
- How can you generalize these data structures?
- Consider data structures for representing the following problems...

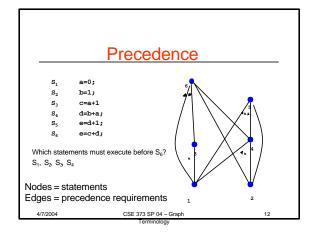
4/7/2004 CSE 373 SP 04 - Graph Terminology



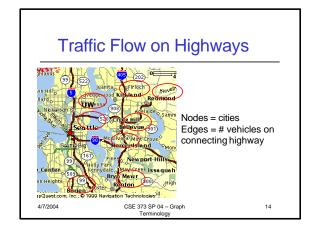








Information Transmission in a Computer Network Seoul 128 New York 140 Nodes = computers Edges = transmission rates 4772004 CSE 373 SP 04 - Graph Terminology 13



Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - > V is a set of vertices or nodes
 - > E is a set of edges that connect vertices

4/7/2004

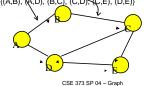
CSE 373 SP 04 -- Graph

15

Graph Example

- Here is a directed graph G = (V, E)
 - > Each edge is a pair (v_1 , v_2), where v_1 , v_2 are vertices in V
 - > V = {A, B, C, D, E, F}

 $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$



Terminology

Directed vs Undirected Graphs

 If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called adigraph): (v₁, v₂) ≠ (v₂, v₁)

If the order of edge pairs (v₁, v₂) does not matter, the graph is called an undirected graph: in this case, (v₁, v₂) = (v₂, v₁)

4/7/2004

CSE 373 SP 04 - Graph

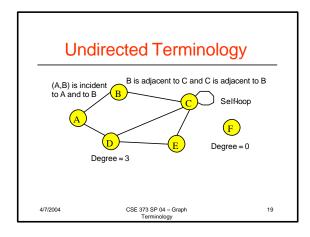
Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G
 - \rightarrow edge e = {u,v} is incident with vertex u and vertex
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - › a self-loop counts twice (both ends count)
 - denoted with deg(v)

4/7/2004

CSE 373 SP 04 - Graph Terminology

ninology

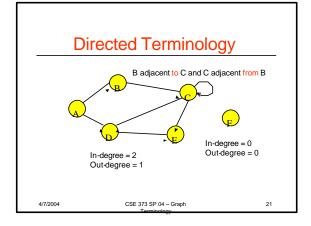


Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - > vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
- vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

4/7/2004

CSE 373 SP 04 - Graph Terminology 20



Handshaking Theorem

 Let G=(V,E) be an undirected graph with |E|=e edges. Then

$$2e = \sum_{v} deg(v)$$

Add up the degrees of all vertices.

- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of deg(v)
 - the sum of the deg(v) values must be even

4/7/2004

CSE 373 SP 04 - Graph

22

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = |V| and
 - Number of edges = |E|
- There are at least two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

4/7/2004

CSE 373 SP 04 - Graph Terminology

23

