Graph Matching
 CSE 373 Data Structures

Graph Matching
DS.GR.14
Input: 2 digraphs $\mathrm{G} 1=(\mathrm{V} 1, \mathrm{E} 1), \mathrm{G} 2=(\mathrm{V} 2, \mathrm{E} 2)$ Questions to ask: 1. Are G1 and G 2 isomorphic ? 2. Is G1 isomorphic to a subgraph of G2? 3. How similar is G1 to G2? 4. How similar is G1 to the most similar strbgreaph of G2?

Isomorphism for Digraphs

G1 is isomorphic to G2 if there is a $1-1$, onto mapping h: V1 \rightarrow V2 such that

$$
(v i, v j) \in E 1 \text { iff }(h(v i), h(v j)) \in E 2
$$

Find an isomorphism h: $\{1,2,3,4,5\} \rightarrow\{a, b, c, d, e\}$. Check that the condition holds for every edge.

DS.GR. 16
Subgraph Isomorphism for Digraphs

G1 is isomorphic to a subgraph of G2 if there is a 1-1 mapping $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ such that

$$
(\mathrm{vi}, \mathrm{vj}) \in \mathrm{E} 1 \Rightarrow(\mathrm{~h}(\mathrm{vi}), \mathrm{h}(\mathrm{vj})) \in \mathrm{E} 2
$$

[^0]
Similar Digraphs

Sometimes two graphs are close to isomorphic, but have a few "errors."

Let $h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d$.

$(1,2)$	(b, e)	The mapping \mathbf{h} has 2 errors.
$(2,1)$	(e, b)	
X	(c, b)	$(\mathrm{c}, \mathrm{b}) \in \mathrm{G} 2$, but $(3,1) \notin \mathrm{G} 1$
$(4,5)$	(a, d)	
$(2,5)$	(e, d)	
$(3,2)$	X	$(3,2) \in \mathrm{G} 1$, but $(\mathrm{c}, \mathrm{e}) \notin \mathrm{G} 2$
$(3,4)$	(c, a)	

Error of a Mapping \quad DS.GR. 18

Intuitively, the error of mapping h tells us

- how many edges of G1 have no corresponding edge in G2 and
- how many edges of G2 have no corresponding edge in G1.

Let $\mathrm{G} 1=(\mathrm{V} 1, \mathrm{E} 1)$ and $\mathrm{G} 2=(\mathrm{V} 2, \mathrm{E} 2)$, and let $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ be a $1-1$, onto mapping.
forward
error
$E F(h)=|\{(v i, v j) \in E 1 \mid(h(v i), h(v j)) \notin E 2\}|$
edge in E1 corresponding edge not in E2
backward
error $E B(h)=\left|\left\{(\mathrm{vi}, \mathrm{vj}) \in \mathrm{E} 2 \mid\left(\mathrm{h}(\mathrm{vi}), \mathrm{h}^{-1}(\mathrm{vj})\right) \notin \mathrm{E} 1\right\}\right|$ edge in E 2 corresponding edge not in E 1
total error $\operatorname{Error}(\mathrm{h})=\mathrm{EF}(\mathrm{h})+\mathrm{EB}(\mathrm{h})$
relational $\operatorname{GD}(\mathrm{G} 1, \mathrm{G} 2)=$ min $\operatorname{Error}(\mathrm{h})$
distance for all 1-1, onto h:V1 $\rightarrow \mathrm{V} 2$

Variations of Relational Distance

1. normalized relational distance: Divide by the sum of the number of edges in E1 and those in E2.
2. undirected graphs:

Just modify the definitions of EF and EB to accommodate.
3. one way mappings:
h is $1-1$, but need not be onto Only the forward error EF is used.
4. labeled graphs:

When nodes and edges can have labels, each node should be mapped to a node with the same label, and each edge should be mapped to an edge with the same label.

DS.GR. 20
Graph Matching Algorithms

1. graph isomorphism

* 2. subgraph isomorphism
* 3. relational distance

4. attributed relational distance (uses labels)

Subgraph Isomorphism
Given model graph $\mathrm{M}=(\mathrm{VM}, \mathrm{EM})$
data graph $\mathrm{D}=(\mathrm{VD}, \mathrm{ED})$
Find 1-1 mapping h:VM \rightarrow VD
satisfying $(\mathrm{vi}, \mathrm{vj}) \in \mathrm{EM} \Rightarrow((\mathrm{h}(\mathrm{vi}), \mathrm{h}(\mathrm{vj})) \in \mathrm{ED}$.

Method: Backtracking Tree Search

Treesearch for Subgraph Isomorphism
in DS. $\operatorname{Digraph} .22$
procedure Treesearch(VM, VD, EM, ED, h) \{
$\mathrm{v}=\mathrm{first}(\mathrm{VM})$;
for each $w \in V D$ \{
$\mathrm{h}^{\prime}=\mathrm{h} \cup\{(\mathrm{v}, \mathrm{w})\} ; \quad$ //add to set
OK = true;
(with vi < vj for
for each edge (vi,vj) in EM $\quad \begin{aligned} & \left.\text { (with } \mathrm{vi}<\mathrm{vj} \mathrm{for}^{\text {undirected graphs }}\right)\end{aligned}$ if one of vi or $v j$ is v and the other has been assigned a value in h ' if ($\left(\mathrm{h}^{\prime}(\mathrm{vi}), \mathrm{h}^{\prime}(\mathrm{vj})\right)$ is NOT in ED) $\{\mathrm{OK}=$ false; break; \};
if OK \{
$\mathrm{VM}^{\prime}=\mathrm{VM}-\mathrm{v} ; \quad /$ remove from set $\mathrm{VD}^{\prime}=\mathrm{VD}-\mathrm{w}^{\prime}$
if isempty(VM^{\prime}) output(h^{\prime}); else Treesearch(VM',VD',EM,ED,h')子 子

[^0]: Isomorphism and subgraph isomorphism are defined similarly for undirected graphs.

 In this case, when $(v i, v j) \in E 1$, either (vi,vj) or (vj,vi) can be listed in E2, since they are equivalent and both mean $\{\mathrm{vi}, \mathrm{vj}\}$.

