
1

Graph Searching

CSE 373
Data Structures

5/11/2004 CSE 373 SP 04 - Graph
Searching

2

Readings

• Reading
› Goodrich and Tamassia, Sections 12.1-12.4

5/11/2004 CSE 373 SP 04 - Graph
Searching

3

Graph Searching

• Find Properties of Graphs
› Spanning trees
› Connected components
› Bipartite structure
› Biconnected components

• Applications
› Finding the web graph – used by Google and

others
› Garbage collection – used in Java run time system
› Alternating paths for matching

5/11/2004 CSE 373 SP 04 - Graph
Searching

4

Graph Searching Methodology
Breadth-First Search (BFS)

• Breadth-First Search (BFS)
› Use a queue to explore neighbors of

source vertex, then neighbors of neighbors
etc.

› All nodes at a given distance (in number of
edges) are explored before we go further

5/11/2004 CSE 373 SP 04 - Graph
Searching

5

Graph Searching Methodology
Depth-First Search (DFS)

• Depth-First Search (DFS)
› Searches down one path as deep as

possible
› When no nodes available, it backtracks
› When backtracking, it explores side-paths

that were not taken
› Uses a stack (instead of a queue in BFS)
› Allows an easy recursive implementation

5/11/2004 CSE 373 SP 04 - Graph
Searching

6

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

i

j

k

DFS(i)

DFS(j)

2

5/11/2004 CSE 373 SP 04 - Graph
Searching

7

DFS Application: Spanning
Tree

• Given a (undirected) graph G(V,E) a
spanning tree of G is a graph G’(V’,E’)
› V’ = V, the tree touches all vertices

(spans) the graph
› E’ is a subset of E such G’ is connected

and there is no cycle in G’
› A graph is connected if given any two

vertices u and v, there is a path from u to v

5/11/2004 CSE 373 SP 04 - Graph
Searching

8

Example of DFS: Graph
connectivity and spanning tree

1
2

7

5

4

6

3

DFS(1)

5/11/2004 CSE 373 SP 04 - Graph
Searching

9

Example Step 2

1
2

7

5

4

6

3

DFS(1)
DFS(2)

Red links will define the spanning tree if
the graph is connected

5/11/2004 CSE 373 SP 04 - Graph
Searching

10

Example Step 5

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

5/11/2004 CSE 373 SP 04 - Graph
Searching

11

Example Steps 6 and 7

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(3)
DFS(7)

5/11/2004 CSE 373 SP 04 - Graph
Searching

12

Example Steps 8 and 9

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(7)

Now back up.

3

5/11/2004 CSE 373 SP 04 - Graph
Searching

13

Example Step 10 (backtrack)

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

Back to 5,
but it has no
more neighbors.

5/11/2004 CSE 373 SP 04 - Graph
Searching

14

Example Step 12

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

Back up to 4.
From 4 we can
get to 6.

5/11/2004 CSE 373 SP 04 - Graph
Searching

15

Example Step 13

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is
nowhere new
to go. Back up.

5/11/2004 CSE 373 SP 04 - Graph
Searching

16

Example Step 14

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)

Back to 4.
Keep backing up.

5/11/2004 CSE 373 SP 04 - Graph
Searching

17

Example Step 17

1
2

7

5

4

6

3

DFS(1)

All nodes are marked so graph is connected;
red links define a spanning tree

All the way
back to 1.

Done.

5/11/2004 CSE 373 SP 04 - Graph
Searching

18

Adjacency List Implementation

• Adjacency lists

1
2
3
4
5
6
7

2 4 6
3 1 7
4 5
5 6 1
3 7 4

3

1 4
5 2

1
2

7

5

4
6

3

G
0
0
0
0
0
0
0

M

Index next

4

5/11/2004 CSE 373 SP 04 - Graph
Searching

19

Another Use for Depth First Search:
Connected Components

1
2

3

9

8
6

10 4

5

7

11

3 connected components

5/11/2004 CSE 373 SP 04 - Graph
Searching

20

Connected Components

1
2

3

9

8
6

10 4

5

7

11

3 connected components are labeled

5/11/2004 CSE 373 SP 04 - Graph
Searching

21

Depth-first Search for Labeling
Connected components

Main {
i : integer
for i = 1 to n do M[i] := 0; //initial label is zero
label := 1;
for i = 1 to n do
if M[i] = 0 then DFS(G,M,i,label); //if i is not labeled
label := label + 1; then call DFS

}
DFS(G[]: node ptr array, M[]: int array, i,label: int) {
v : node pointer;
M[i] := label;
v := G[i]; // first neighbor //
while v ≠ null do // recursive call (below)
if M[v.index] = 0 then DFS(G,M,v.index,label);
v := v.next; // next neighbor //

}
5/11/2004 CSE 373 SP 04 - Graph

Searching
22

Connected Components for
Image Analysis

1

2 3

4

5/11/2004 CSE 373 SP 04 - Graph
Searching

23

Performance DFS

• n vertices and m edges
• Storage complexity O(n + m)
• Time complexity O(n + m)
• Linear Time!

5/11/2004 CSE 373 SP 04 - Graph
Searching

24

Breadth-First Search
BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do

i := Dequeue(Q);
for each j adjacent to i do

if j is not marked then
Enqueue(Q,j) and mark j;

end{BFS}

5

5/11/2004 CSE 373 SP 04 - Graph
Searching

25

Can do Connectivity using
BFS

• Uses a queue to order search

Queue = 1

1
2

7

5

4

6

3

5/11/2004 CSE 373 SP 04 - Graph
Searching

26

Beginning of example

1
2

7

5

4

6

3

Queue = 2,4,6
Mark while on queue
to avoid putting in
queue more than once

5/11/2004 CSE 373 SP 04 - Graph
Searching

27

Depth-First vs Breadth-First

• Depth-First
› Stack or recursion
› Many applications

• Breadth-First
› Queue (recursion no help)
› Can be used to find shortest paths from the start

vertex
› Can be used to find short alternating paths for

matching

5/11/2004 CSE 373 SP 04 - Graph
Searching

28

Minimum Spanning Tree

• Edges are weighted: find minimum cost
spanning tree

• Applications
› Find cheapest way to wire your house
› Find minimum cost to wire a message on

the Internet

