

Fewer Functions Faster

- compare lists and stacks
, by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
, insert(L,X) into a list versuspush(S,X) onto a stack
- compare trees and hash tables
, trees provide for known ordering of all elements
, hash tables just let you (quickly) find an element

Limited Set of Hash

Operations

- For many applications, a limited set of operations is all that is needed
, Insert, Find, and Delete
, Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program , user defined , language keywords

4/7/2004
CSE 373 - SP 04 -- Dictionaries 5

Readings

- Reading

Goodrich and Tamassia, Chapter 8

The Need for Speed

- Data structures we have looked at so far
, Use comparison operations to find items , Need O(log N) time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
, $\log N$ is between 6.6 and 16.6
- Hash tables are an abstract data type designed for $\mathbf{O}(1)$ Find and Inserts

4/72004
CSE 373 - SP 04 -- Dictionaries

Direct Address Tables

- Direct addressing using an array is very fast
- Assume
, keys are integers in the set $U=\{0,1, \ldots m-1\}$
, m is small
, no two elements have the same key
- Then just store each element at the array location array[key]
, search, insert, and delete are trivial

47/2004
CSE 373 - SP 04 - - Dictionaries
6

An Issue

- If most keys in U are used
, direct addressing can work very well (m small)
- The largest possible key in U, say m, may be much larger than the number of elements actually stored (|U| much greater than $|\mathrm{K}|$)
, the table is very sparse and wastes space , in worst case, table too large to have in memory
- If most keys in U are not used
, need to map U to a smaller set closer in size to K

"Find" an Element in an Array

- Data records can be stored in arrays.
, A[0] = \{"CHEM 110", Sizè 89\}
, A[3] = \{"CSE 142", Size 251\}
A[17] = \{"CSE 373", Size 85\}
- Class size for CSE 373?
, Linear search the array - O(N) worst case time
, Binary search - $\mathrm{O}(\log \mathrm{N})$ worst case
- We want to store N items in a table of size M, at a location computed from the key K (which may not be numeric!)
- Hash function
, Method for computing table index from key
- Need of a collision resolution strategy
, How to handle two keys that hash to the same index

12004
CSE 373 - SP 04 -- Dictionaries
12

Go Directly to the Element

- What if we could directly index into the array using the key?
, A["CSE 373"] = \{Size 85\}
- Main idea behind hash tables
, Use a key based on some aspect of the data to index directly into an array
, $\mathrm{O}(1)$ time to access records

The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
, variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

47/2004 CSE 373 - SP 04 -- Dictionaries

Example of a Very Simple Mapping

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
, suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s<1$
, Then a very fast, very good hash function is
- hash(s) = floor(s $\cdot m$)
- where m is the size of the table

Indexing into Hash Table

- Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (i.e, map from U to index)
, Then use this value to index into an array
, Hash("CSE 373") = 157, Hash("CSE 143") = 101
- Output of the hash function
, must always be less than size of array
, should be as evenly distributed as possible

Choosing the Hash Function

- What properties do we want from a hash function?
, Want universe of hash values to be distributed randomly to minimize collisions
, Don't want systematic nonrandom pattern in selection of keys to lead to systematic collisions
Want hash value to depend on all values in entire key and their positions

Simple Hashes

Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works one-to-one

- a mod size

Hashing Integers

- If keys are integers, we can use the hash function:
, Hash(key) = key mod TableSize
- Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, ...)
, all keys map to the same index
, Need to pick TableSize carefully: often, a prime number

Nonnumerical Keys

Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $\mathrm{c}_{0} \mathrm{c}_{1} \mathrm{c}_{2} \ldots \mathrm{c}_{\mathrm{n}}$ to a relatively small number $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots+\mathrm{C}_{\mathrm{n}}$ mod size.
- Generally work with the ASCII character codes when converting strings to numbers keys is the natural numbers $\mathbf{N}=\{0,1, \ldots\}$
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- One solution for a less constrained key set , modular arithmetic
, remainder when " a " is divided by "size"
, in C or Java this is written as $\mathbf{r}=\mathbf{a} \%$ size;
, If TableSize = 251
- $408 \bmod 251=157$
- $352 \bmod 251=101$

Mod Hash Function

Modulo Mapping

- a mod m maps from integers to $0 . . \mathrm{m}-1$
, one to one? no
, onto? yes

Hash Must be Onto Table

- Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
, chars have values between 0 and 127
, Keys will hash only to positions 0 through 8*127 = 1016
- Need to distribute keys over the entire table or the extra space is wasted
- Problems with adding up character values for string keys
, If string keys are short, will not hash evenly to all of the hash table
, Different character combinations hash to same value
- "abc", "bca", and "cab" all add up to the same value (recall this was Problem 1)

Problems with Adding Characters

\qquad

Collisions

- A collision occurs when two different keys hash to the same value
, E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
, $18 \bmod 17=1$ and $35 \bmod 17=1$
- Cannot store both data records in the same slot in array!

47/2004
CSE 373-SP 04 -- Dictionaries

Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list

- Note that there are potentially as many as TableSize lists

47/2004
CSE 373 - SP 04 -- Dictionaries
30

Why Lists?

- Can use List ADT for Find/Insert/Delete in linked list
, $\mathrm{O}(\mathrm{N})$ runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
, $\mathrm{O}(\log \mathrm{N})$ time instead of $\mathrm{O}(\mathrm{N})$
, But the number of elements to search through should be small (otherwise the hashing function is bad or the table is too small) , generally not worth the overhead of BSTs

Load Factor of a Hash Table

- Let $\mathrm{N}=$ number of items to be stored
- Load factor $\lambda=\mathrm{N} /$ TableSize
- TableSize $=101$ and $N=505$, then $\lambda=5$
- TableSize $=101$ and $\mathrm{N}=10$, then $\lambda=0.1$
- Average length of chained list $=\lambda$ and so average time for accessing an item = $O(1)+O(\lambda)$
Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize $\approx N$)
With chaining hashing continues to work for $\lambda>1$
47/2004
CSE 373 - SP 04 -- Dictionarie and Hashing

Cell Full? Keep Looking.

- $h_{i}(X)=(H a s h(X)+F(i))$ mod TableSize
, Define $F(0)=0$
- F is the collision resolution function. Some possibilities:
, Linear: $F(i)=i$
, Quadratic: $F(i)=i^{2}$
, Double Hashing: $F(i)=i \cdot \operatorname{Hash}_{2}(X)$

Linear Probing

- When searching for κ, check locations $h(k)$, $h(K)+1, h(K)+2$, ... mod TableSize until either
$>\mathrm{K}$ is found; or
, we find an empty location (k not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.

4/7/2004
CSE 373 - SP 04 -- Dictionaries 35

Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a "target" for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells

> CSE 373 - SP $04-$ - Diction and Hasning

4/7/2004
CSE 373 - SP 04 - Dictionaries
36

Quadratic Probing

- When searching for x , check locations $h_{1}(x), h_{1}(x)+1^{2}, h_{1}(x)+2^{2}, \ldots$ mod TableSize until either
$>x$ is found; or
, we find an empty location (x not present)
- No primary clustering but secondary clustering possible

Double Hashing

- When searching for x, check locations $h_{1}(x)$, $h_{1}(x)+h_{2}(x), h_{1}(x)+2 * h_{2}(x), \ldots \bmod$ Tablesize until either
$>x$ is found; or
, we find an empty location (x not present)
- Must be careful about $h_{2}(x)$
, Not 0 and not a divisor of m
, eg, $h_{1}(k)=k \bmod m_{1}, h_{2}(k)=1+\left(k \bmod m_{2}\right)$ where m_{2} is slightly less than m_{1}

47/2004
CSE 373 - SP 04 -- Dictionaries
and Hashing and Hashing

Rehashing - Rebuild the Table

- Need to use lazy deletion if we use probing (why?)
, Need to mark array slots as deleted after Delete
, consequently, deleting doesn't make the table any less full than it was before the delete
- If table gets too full $(\lambda \approx 1)$ or if many deletions have occurred, running time gets too long and Inserts may fail

47/2004

Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
, Go through old hash table, ignoring items marked deleted
, Recompute hash value for each non-deleted key and put the item in new position in new table
, Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $\mathrm{O}(\mathrm{N})$ but happens very infrequently
, Not good for real-time safety critical applications
4/7/2004
CSE 373 - SP 04 -- Dictionaries 41

Rehashing Example

Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- If a particular hash function behaves badly on your data, then pick another.
- Always check where the time goes

