
1

Java Review

CSE 373
Data Structures

31 March 2004 CSE 373 SP 04-Java Review 2

Java

A Programming Language for
Web-based Computing with Graphics

31 March 2004 CSE 373 SP 04-Java Review 3

Language Features of Java

-- Garbage-collected
-- Support for Object-oriented programming
-- Support for packages
-- Compiles to intermediate code
-- Intermediate code is then interpreted
-- Built-in support for many data structures
such as hash tables, vectors

31 March 2004 CSE 373 SP 04-Java Review 4

Applets vs CGI

Differences: Java supports client-side processing in Web via “Applets”

HTTP GET/POST

Web page

Apache W.S.

CGI program

Browser

HTTP GET

Java class files

Apache W.S.Browser/JVM

Applet Exec.

Client Side Server Side

31 March 2004 CSE 373 SP 04-Java Review 5

More Features of Java

More Differences:

•Security considerations, because of its web
orientation: compulsory “try” and “catch” error
handling.

•Stronger typing of variables than in, say, Lisp.
•Standard graphics API’s: the AWT and Swing.

31 March 2004 CSE 373 SP 04-Java Review 6

Influences on Java

C, C++: syntax of arithmetic and boolean
expressions, need for safe pointer
operations.

Smalltalk, C++, CLOS: Object orientation

Lisp: garbage collection, “bignums”

2

31 March 2004 CSE 373 SP 04-Java Review 7

Java’s Web Support

Applets: Java virtual machine can run in a browser.

Safe pointers avoid segmentation faults and other
dangerous errors.

Security manager provides that applets don’t
perform I/O to client hard disk.

Applets permitted only limited upload
communication (to the originating server).

Standard networking package is provided.

31 March 2004 CSE 373 SP 04-Java Review 8

Java’s Graphics

AWT: The Abstract Windowing Toolkit is a package
providing standard classes for building GUIs.

SWING is a higher-level, more complex library of
widgets for GUI construction.

Support for decoding GIF and JPEG image formats
is built in.

Java has used two slightly different event models
for user interaction: JDK 1.0 (old) and JDK 1.1 (new).

Java2D is a more advanced imaging package that’s
made to work with Java 2.

31 March 2004 CSE 373 SP 04-Java Review 9

Java’s Threads

Java programs can contain multiple threads of
control.

This can permit parallel processing.

This can permit logical separation of the program
into code for concurrent processes.

Threads are especially useful in animation within an
applet.

Run-time scheduling of threads is not completely
platform independent.

31 March 2004 CSE 373 SP 04-Java Review 10

Example Application

class MyFirstApplication {
public static void main(String[] args) {
System.out.println("Hello CSE 373");

}
}
To compile on a Unix system, type:
javac MyFirstApplication.java

Then to run it, type:
java MyFirstApplication

31 March 2004 CSE 373 SP 04-Java Review 11

Example Applet
import java.applet.Applet;
import java.awt.Graphics;

public class MyFirstApplet extends Applet {
public void paint(Graphics g) {
g.drawString("Hello CSE 373!", 50, 25);
}
}
To compile on a Unix system, type:
javac MyFirstApplet.java

Then to run it, embed a reference to it in a web page...
31 March 2004 CSE 373 SP 04-Java Review 12

Web Page with Applet Tag

<HTML><HEAD>
<TITLE> A Simple Program </TITLE>
</HEAD><BODY>
<H1>So here is my first applet:<H2>

<APPLET
CODE=”MyFirstApplet.class”
WIDTH=150 HEIGHT=25>

</APPLET>

</BODY></HTML>

3

31 March 2004 CSE 373 SP 04-Java Review 13

Logistics of Getting Started With Java

• Choose a place to work: Math Sciences Computer Center may be
best. (It’s CSE 373’s designated lab)

• If you need to, download and install J2SDK 1.4 using the link on
our syllabus page. Decide whether to use Eclipse or the
command-line tools. If you use command-line tools …

• Create a folder for your Java project.
• Choose a text editor to use for editing your source code, e.g.,
Word, saving as Text File.

• Name each of your Java source files using the name of your
public class.

• Under Windows, create files compile.bat and run.bat to
“automate” steps in your edit/compile/run cycle.

31 March 2004 CSE 373 SP 04-Java Review 14

Troubleshooting your Java Setup

• Make sure you use the correct paths to the Java compiler and
Java runtime executable.

• The compiler expects source files to end in .java and requires
that the extension be given in the command:

C:\j2sdk1.4.2\bin javac MyApplication.java
• The Runtime executable requires that you have a .class file to
run, and that it is an application, not an applet.
C:\j2sdk1.4.2\bin java MyApplication

• You don’t type the .class extension here.
• The source file name must match the name of the public class
defined in the file. Capitalization matters. Don’t get it wrong.

31 March 2004 CSE 373 SP 04-Java Review 15

One Setup for Java Applet Development

• Create a simple web page (HTML file) and put it in the same folder as your
applet.

• Start up Netscape Navigator or I.E., and bookmark this page.

• Practice “reloading” the page and the Java applet with your browser. In
Netscape, you hold the shift key and click on Reload, which forces the
applet to be reloaded as well as the text of the page. Otherwise you will
keep getting the (cached) old version of your applet even after updating
your .class files.

• You may wish to open another browser window and bring up the Java
documentation in that window, keeping it open while you are developing.

• When your applet is completely finished, then you may wish to transfer it
and your web page to Dante and publish it on the web. At point, be careful
about where you put each file, and the permissions on the files and the
folders they are in. Always test your applets on the web before submitting
them for grading.

31 March 2004 CSE 373 SP 04-Java Review 16

Java Classes and Inheritance

Object: A computational unit consisting of some data
elements to which are associated some specific
methods for operating on them.

Class: A category of objects having a single formal
description in a software system.

Instance of a class: An object created as an element of
a class and therefore having all of the member
variables and associated methods defined for instances
of that class.

31 March 2004 CSE 373 SP 04-Java Review 17

A Class Hierarchy

ThreeDShape

CurvedShape

Tetrahedron

Polyhedron

RectangularParallelopiped

MixedShape

Sphere Cylinder

Cube

31 March 2004 CSE 373 SP 04-Java Review 18

Class Polyhedron

public abstract class Polyhedron {
protected int nFaces, nVertices, nEdges;
protected double width, length, height;

public void describe() {
System.out.println("This polyhedron has "
+ nFaces + " faces, " + nVertices +
" vertices, and " + nEdges + " edges. Its volume is "
+ volume());

}
public abstract double volume();

}

4

31 March 2004 CSE 373 SP 04-Java Review 19

Class RectangularParallelopiped

public class RectangularParallelopiped extends
Polyhedron {

private double width, length, height;

// A constructor - It sets protected parent variables:
RectangularParallelopiped
(double theWidth, double theLength, double theHeight) {

width=theWidth; length=theLength; height=theHeight;
nFaces = 6; nVertices = 8; nEdges = 12;

}
// A concrete method for the parent’s abstract method:
public double volume() {
return width * length * height;

}
}

31 March 2004 CSE 373 SP 04-Java Review 20

Class Cube

public class Cube extends
RectangularParallelopiped{

// A constructor that calls its parent constructor:
Cube(double side) {

super(side, side, side);
}

}
// Cube inherits the volume() method of its parent.

31 March 2004 CSE 373 SP 04-Java Review 21

Class Tetrahedron

public class Tetrahedron extends Polyhedron{
// A constructor:
Tetrahedron(double theWidth, double theLength, double theHeight) {
width = theWidth; length = theLength; height = theHeight;
nFaces = 4; nVertices = 4; nEdges = 6;

}
// A different concrete method for the same abstract method:
public double volume() {
return (width * length * height) / 6.0;

}
// This method overrides the parent’s, but calls it, too.
public void describe() {
System.out.print(“(Tetrahedron) “); super.describe();

}
}

31 March 2004 CSE 373 SP 04-Java Review 22

Class Poly (The Application)
public class Poly {

private Polyhedron p1, p2, p3;

public static void main(String [] argv) {
Poly thisApp = new Poly();
thisApp.p1 = new Cube(5);
thisApp.p2 = new Tetrahedron(10, 8, 7);
thisApp.p3 = new RectangularParallelopiped(2, 3, 4);

thisApp.p1.describe();
thisApp.p2.describe();
thisApp.p3.describe();

}
}

31 March 2004 CSE 373 SP 04-Java Review 23

Output

This polyhedron has 6 faces, 8 vertices, and 12 edges.
Its volume is 125.0
(Tetrahedron)This polyhedron has 4 faces, 4 vertices, and 6
edges. Its volume is 93.33333333333333
This polyhedron has 6 faces, 8 vertices, and 12 edges. Its
volume is 24.0

31 March 2004 CSE 373 SP 04-Java Review 24

Class (Static) Variables and Methods

Class variables (not instance variables) and class
methods are shared by all instances of the class.

There is only one copy of a class variable.
protected static int numInstances = 0; // a class variable
MyObject() { numInstances++; } // a constructor

public static void main(String [] argv) {} // a class method

Class variables and methods can be used even if there
are no instances of the class. Class variables can serve
as global variables in a program.

5

31 March 2004 CSE 373 SP 04-Java Review 25

Java Packages

A package is a group of related classes.

Some standard packages are java.awt and java.util
To create a package, put a package declaration at the beginning of each
file containing the class definitions that are to belong to the package.

package geometry;
public class Dodecahedron { // ...
}
public class Icosahedron { // ...
}

Nested packages are permitted. When imported, their class files must be
located in subdirectories of their outer package directories.

31 March 2004 CSE 373 SP 04-Java Review 26

Scopes of Member Names in Java

public: Accessible inside & outside of its class
and subclasses.

private: Accessible only within its class definition.

protected: Accessible within its class definition
and those of its descendant classes.

package: Accessible within the same package
(possibly from otherwise unrelated classes).

31 March 2004 CSE 373 SP 04-Java Review 27

Scopes of Identifiers in Methods

Scope of an identifier introduced within a
method defaults to the block containing it.

{ for (int i=0; i<10; i++) {
System.out.println(“Now i = “ + i);

}
doSomething(i);

}
double i = 100.0;

31 March 2004 CSE 373 SP 04-Java Review 28

Method Inheritance
Suppose public class ChildClass extends ParentClass.

By default, each method of ParentClass is inherited by ChildClass.

An abstract method in ParentClass is one for which no implementation is
provided, and that must be overridden by a method of the same name in
ChildClass in order to be used.

If ParentClass contains any abstract methods, it must be declared an
abstract class, and it cannot be directly instantiated.

If ChildClass overrides a method m(args) of ParentClass, the
ParentClass version is still accessible within ChildClass using
super.m(args)

A method qualified as final cannot be overridden.

31 March 2004 CSE 373 SP 04-Java Review 29

Classes and Types

A type can be considered to be a restriction on the set of values that a
variable is permitted to store.

A class can be used as a type.
String name = "Washington";
Cube myBlock = new Cube(10);

In Java, there are several primitive types that are not classes, e.g.:
int, byte, short, long, float, double, char, boolean.

These permit “lightweight” values to be used, which can be stored and
manipulated more efficiently than can bona fide objects.

31 March 2004 CSE 373 SP 04-Java Review 30

Upcasting and Downcasting

Upcasting occurs when an object of one type is
assigned to a variable declared with a supertype
of the object. No explicit casting is needed:

Polyhedron p = new Cube(5);

Downcasting, however, requires an explicit cast:

Cube c = (Cube) p;

6

31 March 2004 CSE 373 SP 04-Java Review 31

Summary
A class is a formal category of program objects within a software
system.

Instances have all the member variables and methods of their class,
including those inherited from superclasses.

Subclasses can contain member variables and methods in addition to
those inherited.

Inherited methods can be overridden with versions specific to a
subclass.

Java provides mechanisms for hiding or not hiding names across the
class hierarchy.

Classes are related to types.

