Priority Queues

CSE 373
Data Structures

Readings

» Reading

> Goodrich and Tamassia, Chapter 7

4/7/2004 Priority Queues

Reuvisiting FindMin

« Application: Find the smallest (or
highest priority) item quickly
> Operating system needs to schedule jobs
according to priority instead of FIFO

> Event simulation (bank customers arriving
and departing, ordered according to when
the event happened)

> Find student with highest grade, employee
with highest salary etc.

4[7/12004 Priority Queues 3

Priority Queue ADT

« Priority Queue can efficiently do:
> FindMin (and DeleteMin)
> Insert

* What if we use...

> Lists: If sorted, what is the run time for Insert and
FindMin? Unsorted?

> Binary Search Trees: What is the run time for
Insert and FindMin?

> Hash Tables: What is the run time for Insert and
FindMin?

4/7/2004 Priority Queues

Less flexibility ® More speed

Lists

> If sorted: FindMin is O(1) but Insert is O(N)

> If not sorted: Insert is O(1) but FindMinis O(N)
Balanced Binary Search Trees (BSTs)

> Insert is O(log N) and FindMin is O(log N)
Hash Tables

> Insert O(1) but no hope for FindMin

BSTs look good but...

> BSTs are efficient for all Finds, not just FindMin
> We only need FindMin

4/7/2004 Priority Queues 5

Better than a speeding BST

» We can do better than Balanced Binary
Search Trees?

> Very limited requirements: Insert, FindMin,
DeleteMin The goals are:

> FindMin is O(1)
> Insert is O(log N)
> DeleteMin is O(log N)

4/7/2004 Priority Queues

Binary Heaps

* Abinary heap is a binary tree (NOT a BST) that
is:
> Complete: the tree is completely filled except
possibly the bottom level, which is filled from left to
right
Satisfies the heap order property
« every node is less than or equal to its children
« orevery node is greater than or equal to its children
e The root node is always the smallest node
> or the largest, depending on the heap order

v

4[7/12004 Priority Queues 7

Heap order property

« A heap provides limited ordering information
« Each path is sorted, but the subtrees are not
sorted relative to each other
> A binary heap is NOT a binary search tree

These are all valid binary heaps (minimum)

4/7/2004 Priority Queues 8

Binary Heap vs Binary Search

Trapa
Treee

Binary Heap Binary Search Tree

Parent is less than both Parent is greater than left
left and right children child, less than right child

4[7/12004 Priority Queues 9

Structure property

« A binary heap is a complete tree

> All nodes are in use except for possibly the
right end of the bottom row

4/7/2004 Priority Queues 10

Examples

i 2

complete tree,
heap order is"max"

not complete
-
complete tree, completetree, but min
heap order is"min heap order is broken
4/7/2004 Priority Queues 11

Array Implementation of

« Root node = A[1]

« Children of A[i] = A[2i], A[2i + 1]

« Parent of A[j] = A[j/2]

« Keep track of current size N (number of
nodes)

2
. L |Z |4 |b : ;I Y O
idex 0 1 2 3 4 5| 6 7 7 5
- 4 5
N=5

4/7/2004 Priority Queues 12

FindMin and DeleteMin

* FindMin: Easy!

> Returnrootvalue Al >

> Run time =?

» DeleteMin:

> Delete (and return) value
at root node

4[7/12004 Priority Queues 13

DeleteMin

 Delete (and return)
value at root node

4/7/2004 Priority Queues

14

Maintain the Structure

Pranarihyvs
—1TOpPCIty

* We now have a “Hole” at
the root
> Need to fill the hole with
another value
« When we get done, the
tree will have one less
node and must still be
complete Q

4[7/12004 Priority Queues 15

Maintain the Heap Property

* The last value has lost its
node g
> we need to find a new

place for it

* We can do a simple
insertion sort operation to
find the correct place for 4
it in the tree

4/7/2004 Priority Queues

16

DeleteMin: Percolate Down

» Keep comparing with children A[2i] and A[2i + 1]

» Copy smaller child up and go down one level

« Done if both children are 3 item or reached a leaf node
* What is the run time?

4/7/2004 Priority Queues 17

G

6[10]8 4

Percolate Down

PercDown(i:integer, x: integer): {

// Nis the nunber elenents, i is the hole,
x is the value to insert
Case{
nochildren 2j > N : Ali] :=x; //at botton/
onechid 2i = N: if Al2i] < x then
at the end A[I] i = A[Zi]; A[Zi] =X
else Ali] :=x;
2chidren 2j < N: if A[2i] < Al2i+1] then j := 2i;
else j 1= 2i+1;

if Alj] < x then
Ai] = Ajl; Percbown(j,Xx);
else Ali] 1= x;

4/7/2004 Priority Queues

18

DeleteMin: Run Time Analysis

* Run time is O(depth of heap)
» A heap is a complete binary tree

« Depth of a complete binary tree of N
nodes?
> depth = dog,(N)G

* Run time of DeleteMinis O(log N)

4[7/12004 Priority Queues 19

Insert

« Add a value to the tree

» Structure and heap
order properties must
still be correct when we
are done

4/7/2004 Priority Queues

20

Maintain the Structure

Pranarihyvs
—1TOpPCIty

 The only valid place for

anew node in a @

complete tree is at the]
end of the array
« We need to decide on
the correct value for the
new node, and adjust
the heap accordingly

4[7/12004 Priority Queues 21

Maintain the Heap Property

* The new value goes where?

* We can do a simple insertion
sort operation to find the
correct place for it in the tree

Insert: Percolate Up

il

« Start at last node and keep comparing with parent A[i/2]
« If parent larger, copy parent down and go up one level

« Done if parent £ item or reached top node A[1]

* Run time?

4/7/2004 Priority Queues 23

1
1
0
4/7/2004 Priority Queues 22
Insert: Done
10
11 9 6
* Run time?
4/7/2004 Priority Queues 24

PercUp

« Define PercUp which percolates new
entry to correct spot.

« Note: the parent of i is i/2

PercUp(i : integer, x : integer): {
2?77
}

4[7/12004 Priority Queues 25

Sentinel Values

« Every iteration of Insert needs to test:
> if it has reached the top node A[1]

> if parent £item

« Can avoid first test if A[0] contains a very
large negative value

> sentinel ¥ < item, for all items
« Second test alone always stops at top

e ¥ p BBy hlobdibbb[][]

index @ 5 6 7 8 9 10 11 12 13

4/7/2004 Priority Queues 26

Binary Heap Analysis

« Space needed for heap of N nodes: O(MaxN)
> An array of size MaxN, plus a variable to store the
size N, plus an array slot to hold the sentinel

* Time
> FindMin: O(1)
> DeleteMin and Insert: O(log N)
> BuildHeap from N inputs : O(N) How is this possible?

4[7/12004 Priority Queues 27

Build Heap

Bui | dHeap {
for i = N2to1lby-1 (i, Alil)
}

N=11

8

PLoN £
d B - & B
‘B ROPO A ROD
Soo, - LS

4/7/2004 Priority Queues 28

Build Heap

- ~
~

VA

4/7/2004 Priority Queues 29

Build Heap

976 4 9° 7 6 1T

4/7/2004 Priority Queues 30

Analysis of Build Heap

e Assume N =2K-1

> Level 1: k -1 steps for 1 item

> Level 2: k - 2 steps for 2 items

> Level 3: k - 3 steps for 4 items

> Leveli:k-isteps for 2+ items
kdl

TotalSteps =g (k-i)2"=2"-k-1

=1

=0(N)

4[7/12004 Priority Queues 31

Other Heap Operations

 Find(X, H): Find the element X in heap H of N
elements

> What is the running time? O(N)
FindMax(H): Find the maximum element in H
Where FindMin is O(1)

> What is the running time? O(N)

» We sacrificed performance of these operations
in order to get O(1) performance for FindMin

4/7/2004 Priority Queues 32

Other Heap Operations

« DecreaseKey(P,D,H): Decrease the key
value of node at position P by a positive
amount D, e.g., to increase priority

> First, subtract D from current value at P
> Heap order property may be violated

> SO percolate up to fix

> Running Time: O(log N)

4[7/12004 Priority Queues 33

Other Heap Operations

* IncreaseKey(P,D,H): Increase the key
value of node at position P by a positive
amount D, e.g., to decrease priority

> First, add Dto current value at P

> Heap order property may be violated
> SO percolate down to fix

> Running Time: O(log N)

4/7/2004 Priority Queues 34

Other Heap Operations

« Delete(P,H): E.g. Delete a job waiting in
gueue that has been preemptively
terminated by user

> Use DecreaseKey(P ¥ ,H) followed by
DeleteMin

> Running Time: O(log N)

4/7/2004 Priority Queues 35

Other Heap Operations

» Merge(H1,H2): Merge two heaps H1 and
H2 of size O(N). H1 and H2 are stored in
two arrays.
> Can do O(N) Insert operations: O(N log N)

time
> Better: Copy H2 at the end of H1 and use
BuildHeap. Running Time: O(N)

4/7/2004 Priority Queues 36

PercUp Solution

PercUp(i : integer, x : integer):

if i =1then A[1] :=x
else if Ali/2] < x then
Ali] = x;
el se
Al = ANil2];
Percup(i/2,x);

4[7/12004 Priority Queues

