Priority Queues

CSE 373
Data Structures

Readings

» Reading

> Goodrich and Tamassia, Chapter 7
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Reuvisiting FindMin

« Application: Find the smallest ( or
highest priority) item quickly
> Operating system needs to schedule jobs
according to priority instead of FIFO

> Event simulation (bank customers arriving
and departing, ordered according to when
the event happened)

> Find student with highest grade, employee
with highest salary etc.
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Priority Queue ADT

« Priority Queue can efficiently do:
> FindMin (and DeleteMin)
> Insert

* What if we use...

> Lists: If sorted, what is the run time for Insert and
FindMin? Unsorted?

> Binary Search Trees: What is the run time for
Insert and FindMin?

> Hash Tables: What is the run time for Insert and
FindMin?
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Less flexibility ® More speed

Lists

> If sorted: FindMin is O(1) but Insert is O(N)

> If not sorted: Insert is O(1) but FindMinis O(N)
Balanced Binary Search Trees (BSTs)

> Insert is O(log N) and FindMin is O(log N)
Hash Tables

> Insert O(1) but no hope for FindMin

BSTs look good but...

> BSTs are efficient for all Finds, not just FindMin
> We only need FindMin
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Better than a speeding BST

» We can do better than Balanced Binary
Search Trees?

> Very limited requirements: Insert, FindMin,
DeleteMin The goals are:

> FindMin is O(1)
> Insert is O(log N)
> DeleteMin is O(log N)
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Binary Heaps

* Abinary heap is a binary tree (NOT a BST) that
is:
> Complete: the tree is completely filled except
possibly the bottom level, which is filled from left to
right
Satisfies the heap order property
« every node is less than or equal to its children
« orevery node is greater than or equal to its children
e The root node is always the smallest node
> or the largest, depending on the heap order

v
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Heap order property

« A heap provides limited ordering information
« Each path is sorted, but the subtrees are not
sorted relative to each other
> A binary heap is NOT a binary search tree

These are all valid binary heaps (minimum)
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Binary Heap vs Binary Search

Trapa
Treee

Binary Heap Binary Search Tree

Parent is less than both Parent is greater than left
left and right children child, less than right child
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Structure property

« A binary heap is a complete tree

> All nodes are in use except for possibly the
right end of the bottom row

4/7/2004 Priority Queues 10

Examples

i 2

complete tree,
heap order is"max"

not complete
-
complete tree, completetree, but min
heap order is"min heap order is broken
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Array Implementation of

« Root node = A[1]

« Children of A[i] = A[2i], A[2i + 1]

« Parent of A[j] = A[j/2]

« Keep track of current size N (number of
nodes)

2
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idex 0 1 2 3 4 5| 6 7 7 5
- 4 5
N=5
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FindMin and DeleteMin

* FindMin: Easy!

> Returnrootvalue Al >

> Run time =?

» DeleteMin:

> Delete (and return) value
at root node
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DeleteMin

 Delete (and return)
value at root node
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Maintain the Structure

Pranarihyvs
—1TOpPCIty

* We now have a “Hole” at
the root
> Need to fill the hole with
another value
« When we get done, the
tree will have one less
node and must still be
complete Q
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Maintain the Heap Property

* The last value has lost its
node g
> we need to find a new

place for it

* We can do a simple
insertion sort operation to
find the correct place for 4
it in the tree
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DeleteMin: Percolate Down

» Keep comparing with children A[2i] and A[2i + 1]

» Copy smaller child up and go down one level

« Done if both children are 3 item or reached a leaf node
* What is the run time?
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G
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Percolate Down

PercDown(i:integer, x: integer): {

// Nis the nunber elenents, i is the hole,
x is the value to insert
Case{
nochildren  2j > N : Ali] :=x; //at botton/
onechid 2i = N: if Al2i] < x then
at the end A[I] i = A[Zi]; A[Zi] =X
else Ali] :=x;
2chidren  2j < N: if A[2i] < Al2i+1] then j := 2i;
else j 1= 2i+1;

if Alj] < x then
Ai] = Ajl; Percbown(j,Xx);
else Ali] 1= x;
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DeleteMin: Run Time Analysis

* Run time is O(depth of heap)
» A heap is a complete binary tree

« Depth of a complete binary tree of N
nodes?
> depth = dog,(N)G

* Run time of DeleteMinis O(log N)
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Insert

« Add a value to the tree

» Structure and heap
order properties must
still be correct when we
are done
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Maintain the Structure

Pranarihyvs
—1TOpPCIty

 The only valid place for

anew node in a @

complete tree is at the ]
end of the array
« We need to decide on
the correct value for the
new node, and adjust
the heap accordingly
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Maintain the Heap Property

* The new value goes where?

* We can do a simple insertion
sort operation to find the
correct place for it in the tree

Insert: Percolate Up

il

« Start at last node and keep comparing with parent A[i/2]
« If parent larger, copy parent down and go up one level

« Done if parent £ item or reached top node A[1]

* Run time?
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1
1
0
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Insert: Done
10
11 9 6
* Run time?
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PercUp

« Define PercUp which percolates new
entry to correct spot.

« Note: the parent of i is i/2

PercUp(i : integer, x : integer): {
2?77
}
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Sentinel Values

« Every iteration of Insert needs to test:
> if it has reached the top node A[1]

> if parent £item

« Can avoid first test if A[0] contains a very
large negative value

> sentinel ¥ < item, for all items
« Second test alone always stops at top

e ¥ p BBy hlobdibbb[][]

index @ 5 6 7 8 9 10 11 12 13
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Binary Heap Analysis

« Space needed for heap of N nodes: O(MaxN)
> An array of size MaxN, plus a variable to store the
size N, plus an array slot to hold the sentinel

* Time
> FindMin: O(1)
> DeleteMin and Insert: O(log N)
> BuildHeap from N inputs : O(N)  How is this possible?
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Build Heap

Bui | dHeap {
for i = N2to1lby-1 (i, Alil)
}

N=11

8

PLoN £
d B - & B
‘B ROPO A ROD
Soo, - LS
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Build Heap
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Build Heap

976 4 9° 7 6 1T
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Analysis of Build Heap

e Assume N =2K-1

> Level 1: k -1 steps for 1 item

> Level 2: k - 2 steps for 2 items

> Level 3: k - 3 steps for 4 items

> Leveli:k-isteps for 2+ items
kdl

TotalSteps =g (k-i)2"=2"-k-1

=1

=0(N)
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Other Heap Operations

 Find(X, H): Find the element X in heap H of N
elements

> What is the running time? O(N)
FindMax(H): Find the maximum element in H
Where FindMin is O(1)

> What is the running time? O(N)

» We sacrificed performance of these operations
in order to get O(1) performance for FindMin
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Other Heap Operations

« DecreaseKey(P,D,H): Decrease the key
value of node at position P by a positive
amount D, e.g., to increase priority

> First, subtract D from current value at P
> Heap order property may be violated

> SO percolate up to fix

> Running Time: O(log N)
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Other Heap Operations

* IncreaseKey(P,D,H): Increase the key
value of node at position P by a positive
amount D, e.g., to decrease priority

> First, add Dto current value at P

> Heap order property may be violated
> SO percolate down to fix

> Running Time: O(log N)
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Other Heap Operations

« Delete(P,H): E.g. Delete a job waiting in
gueue that has been preemptively
terminated by user

> Use DecreaseKey(P ¥ ,H) followed by
DeleteMin

> Running Time: O(log N)
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Other Heap Operations

» Merge(H1,H2): Merge two heaps H1 and
H2 of size O(N). H1 and H2 are stored in
two arrays.
> Can do O(N) Insert operations: O(N log N)

time
> Better: Copy H2 at the end of H1 and use
BuildHeap. Running Time: O(N)
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PercUp Solution

PercUp(i : integer, x : integer):

if i =1then A[1] :=x
else if Ali/2] < x then
Ali] = x;
el se
Al = ANil2];
Percup(i/2,x);
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