Priority Queues

CSE 373
Data Structures

Readings

- Reading
 - Goodrich and Tamassia, Chapter 7

4/7/2004

Priority Queues

Revisiting FindMin

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.

4/7/2004

Priority Queues

Priority Queue ADT

- Priority Queue can efficiently do:
 - > FindMin (and DeleteMin)
 - > Insert
- What if we use...
 - Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 - › Binary Search Trees: What is the run time for Insert and FindMin?
 - Hash Tables: What is the run time for Insert and FindMin?

4/7/2004

Priority Queues

Less flexibility → More speed

- Lists
 - > If sorted: FindMin is O(1) but Insert is O(N)
 - If not sorted: Insert is O(1) but FindMin is O(N)
- Balanced Binary Search Trees (BSTs)
- → Insert is O(log N) and FindMin is O(log N)
- Hash Tables
 - > Insert O(1) but no hope for FindMin
- BSTs look good but...
 - > BSTs are efficient for all Finds, not just FindMin
 - > We only need FindMin

7/2004 Priority Queues

Better than a speeding BST

- We can do better than Balanced Binary Search Trees?
 - Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 - → FindMin is O(1)
 - → Insert is O(log N)
 - > DeleteMin is O(log N)

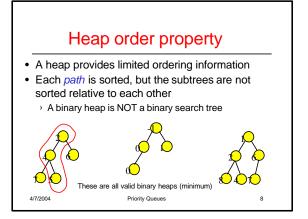
4/7/2004

Priority Queues

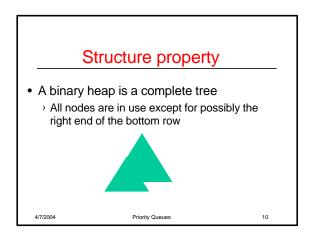
Binary Heaps

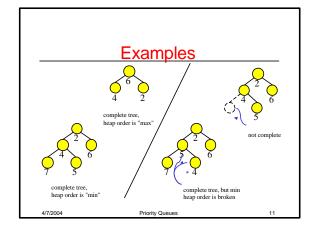
- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - > Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
- The root node is always the smallest node
 - or the largest, depending on the heap order

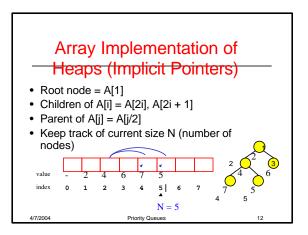
4/7/2004 Priority Queues

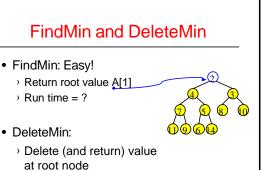


Binary Heap vs Binary Search Tree Binary Heap Binary Search Tree Binary Search Tree Binary Search Tree Parent is less than both left and right children Priority Queues Priority Queues 9

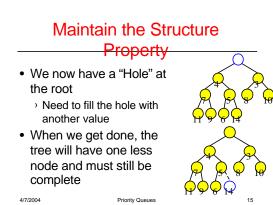






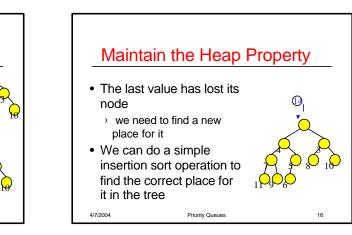


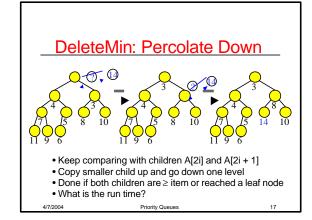
• Delete (and return) value at root node



Priority Queues

4/7/2004





```
Percolate Down

Percovn(i:integer, x: integer): {
    // N is the number elements, i is the hole,
        x is the value to insert
    Case{
    nochildren 2i > N : A[i] := x: //at bottom//
    one child 2i = N : if A[2i] < x then
        a[i] := A[2i]; A[2i] := x:
        else A[i] := x;

2 children 2i < N : if A[2i] < A[2i+1] then j := 2i;
        else j := 2i+1;
        if A[j] < x then
        A[i] := A[j]; PercDown(j,x);
        else A[i] := x;

}

4772004

Priority Queues 18
```

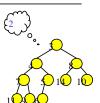
DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- · A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - \rightarrow depth = $\lfloor \log_2(N) \rfloor$
- Run time of DeleteMin is O(log N)

4/7/2004

Insert

- · Add a value to the tree
- Structure and heap order properties must still be correct when we are done

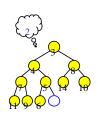


4/7/2004 Priority Queues

Maintain the Structure Property

Priority Queues

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

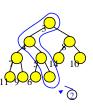


4/7/2004

Priority Queue

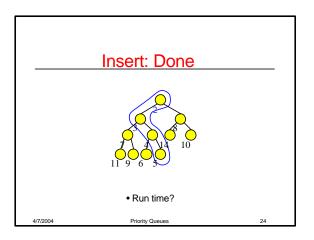
Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree



7/2004 Priority Queue

Insert: Percolate Up The proof of the proof of the proof of the parent | 10 | 10 | 10 | 10 | Start at last node and keep comparing with parent A[i/2] If parent larger, copy parent down and go up one level Done if parent ≤ item or reached top node A[1] Run time? Priority Queues 23



PercUp

- Define PercUp which percolates new entry to correct spot.
- Note: the parent of i is i/2

```
PercUp(i : integer, x : integer): {
????
}
```

4/7/2004

Priority Queues

25

Sentinel Values

• Every iteration of Insert needs to test:

→ if it has reached the top node A[1]

→ if parent ≤ item

• Can avoid first test if A[0] contains a very large negative value

→ sentinel -∞ < item, for all items

• Second test alone always stops at top

value

value

index

value

Priority Queues

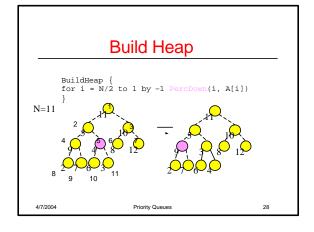
26

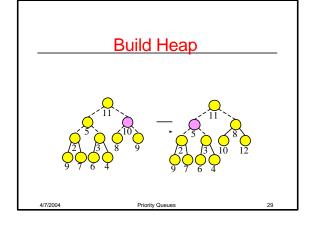
Binary Heap Analysis

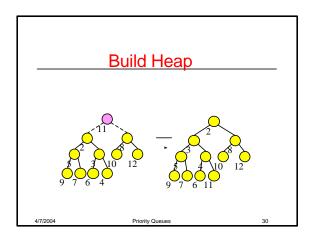
- Space needed for heap of N nodes: O(MaxN)
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - › FindMin: O(1)
 - › DeleteMin and Insert: O(log N)
 - > BuildHeap from N inputs : O(N) How is this possible?

4/7/2004

Priority Queues







Analysis of Build Heap

- Assume N = 2^K −1
 - > Level 1: k -1 steps for 1 item
 - › Level 2: k 2 steps for 2 items
 - › Level 3: k 3 steps for 4 items
 - > Level i : k i steps for 2ⁱ⁻¹ items

Total Steps =
$$\sum_{i=1}^{k-1} (k-i) 2^{i-1} = 2^k - k - 1$$

= O(N)

4/7/2004

Priority Queues

31

Other Heap Operations

- Find(X, H): Find the element X in heap H of N elements
 - > What is the running time? O(N)
- FindMax(H): Find the maximum element in H
- Where FindMin is O(1)
 - > What is the running time? O(N)
- We sacrificed performance of these operations in order to get O(1) performance for FindMin

4/7/2004

Priority Queues 32

Other Heap Operations

- DecreaseKey(P,Δ,H): Decrease the key value of node at position P by a positive amount Δ , e.g., to increase priority
 - First, subtract Δ from current value at P
 - > Heap order property may be violated
 - > so percolate up to fix
 - > Running Time: O(log N)

4/7/2004

Priority Queues

33

Other Heap Operations

- IncreaseKey(P,Δ,H): Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - → First, add ∆ to current value at P
 - > Heap order property may be violated
 - > so percolate down to fix
 - Running Time: O(log N)

7/2004 Priority Queues 34

Other Heap Operations

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 -) Use DecreaseKey(P, ∞, H) followed by DeleteMin
 - > Running Time: O(log N)

4/7/200

Priority Queues

35

Other Heap Operations

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - Can do O(N) Insert operations: O(N log N) time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)

/2004 Priority Queue

PercUp Solution