Splay Trees and B-Trees

CSE 373
Data Structures

Readings

* Reading
> Goodrich and Tamassia, Chapter 9:

> Splay trees in 3¢ edition only (pp.432-443)
> B-trees in both editions: section 9.6.

4/15/2004 CSE 373 SP 04 -- Splay Trees
and B-Trees

Self adjusting Trees

« Ordinary binary search trees have no balance
conditions

> what you get from insertion order is it
» Balanced trees like AVL trees enforce a
balance condition when nodes change
> tree is always balanced after an insert or delete

« Self-adjusting trees get reorganized over time
as nodes are accessed

> Tree adjusts after insert, delete, or find

4/15/2004 CSE 373 SP 04 -- Splay Trees 3
and B-Trees

Splay Trees

« Splay trees are tree structures that:
> Are not perfectly balanced all the time

> Data most recently accessed is near the root.
(principle of locality; 80-20 “rule”)

e The procedure:

> After node X is accessed, perform “splaying”
operations to bring X to the root of the tree.

> Do this in a way that leaves the tree more
balanced as a whole

4/15/2004 CSE 373 SP 04 -- Splay Trees 4
and B-Trees

Splay Tree Terminology

* Let X be a non-root node with 3 2 ancestors.
» P s its parent node.
» G is its grandparent node.

g =

4/15/2004 CSE 373 SP 04 -- Splay Trees 5
and B-Trees

Zig-Zig and Zig-Zag

Parent and grandparent Parent and grandparent
in same direction. in different directions.

Zig-zi

/\ |
\/Z|g-zag

4/15/2004 CSE 373 SP 04 -- Splay Trees 6
and B-Trees

Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

parent
element
left right

2. When X is accessed, apply one of six rotation routines.
« Single Rotations (X has a P (the root) but no G)
ZigFromLeft, ZigFromRight

* Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

4/15/2004 CSE 373 SP 04 -- Splay Trees 7
and B-Trees

Zig at depth 1 (root)

« “Zig" is just a single rotation, as in an AVL tree
* Let R be the node that was accessed (e.g. using

Find) ot
R C ZigFromLeft A O
/\ " /\

B C

« ZigFromLeft moves R to the top ® faster access
next time

4/15/2004 CSE 373 SP 04 -- Splay Trees 8
and B-Trees

Zig at depth 1

e Suppose Q is now accessed using Find

. root

C ZigFromRight A
\ /

A B B C

» ZigFromRight moves Q back to the top

4/15/2004 CSE 373 SP 04 -- Splay Trees 9
and B-Trees

Zig-Zag operation

e “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

P :‘R \\\\
AN) _ / \\ |
D (zigFromRight)y / ®/D (ZigFromLef) Q P
A

v —_— /\
R Q' C A B CD
/\ /\
B C A B
ZigZagFromlLeft

4/15/2004 CSE 373 SP 04 -- Splay Trees 10
and B-Trees

Zig-Zig operation

» “Zig-Zig” consists of two single rotations

of the same direction (R is the node that
was accessed)

@ A%
D Semisplay R ~E /

\
\

/ Full splay AN
—_ /\ I\ —
R C

\\/
A (ZigFromLefy A B C D (ZigFromLefy B /P\
A B (b) C D
ZigZigFromLeft
4/15/2004 CSE 373 SP 04 -- Splay Trees 11
and B-Trees
Decreasing depth -
11 11}
) ’ @ i
/\ Q/ \F Af }3 T/ \Q
Q F
/\ @\ F EN
E E E 5 P A § D P
/\ /\ /N I\ AN AN
S D A S BE R E F B C E F
@\ 1\ /\
C B R cC D
£\ /\
A B cC D
(a) (b) (c) (d}
Find(h) — FRdR
> >
4/15/2004

CSE 373 SP 04 -- Splay Trees 12
and B-Trees

Splay Tree Insert and Delete

* Insert x
> Insert x as normal then splay x to root.
» Delete x

> Splay x to root and remove it. (note: the node does
not have to be a leaf or single child node like in
BST delete.) Two trees remain, right subtree and
left subtree.

> Splay the max in the left subtree to the root

> Attach the right subtree to the new root of the left
subtree.

4/15/2004 CSE 373 SP 04 -- Splay Trees 13
and B-Trees

Example Insert

* Inserting in order 1,2,3,...,8
« Without self-adjustment

Yo
@Xx%

4/15/2004 CSE 373 SP 04 -- Splay Trees 14
and B-Trees

O(?) time for n Insert

With Self-Adjustment

1 ©

, @ ZigFromRight @
o @
®

3 @ ZigFromRight

4/15/2004 CSE 373 SP 04 -- Splay Trees 15
and B-Trees
With Self-Adjustment
4 gQ\@ o
o8 —
Each Insert takes O(1) time therefore O(n) time for n Insert!!
4/15/2004 CSE 373 SP 04 -- Splay Trees 16

and B-Trees

Example Deletion

& e %
2 & 2
é@s@ & éé

Splay (zig) jremove

6 o) attach @ o)
& & @ d &b B
® © B @

and B-Trees

Analysis of Splay Trees

» Splay trees tend to be balanced

> M operations takes time O(M log N) for M > N
operations on N items. (proof is difficult)

> Amortized O(log n) time.

» Splay trees have good “locality” properties
> Recently accessed items are near the root of the
tree.
> Items near an accessed one are pulled toward the
root.

4/15/2004 CSE 373 SP 04 -- Splay Trees 18
and B-Trees

Beyond Binary Search Trees:
Multi-Way Trees

« Example: B-tree of order 3 has 2 or 3
children per node

@3-
611> Q7>

G4 678> @D B U O @1

» Search for 8

4/15/2004 CSE 373 SP 04 -- Splay Trees 19
and B-Trees

B-Trees

B-Trees are multi-way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between éM/2u
and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.

Leaves store between é./20 and L data records,
where | can he pqual toM (dpfr—mlr) ar_can be different

4/15/2004 CSE 373 SP 04 -- Splay Trees 20
and B-Trees

10

B-Tree Detalls

Each (non-leaf) internal node of a B-tree has:

> Between éM/2uand M children.

Keys are ordered so that:
ki< Ko< <Ky

4/15/2004 CSE 373 SP 04 -- Splay Trees 21
and B-Trees

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree T, is the ith child of the node:
all keys in T, must be between keys k;_; and k;
i.e. ki, £T<Kk
ki, is the smallest key in T
All keys in first subtree T, <k;
All keys in last subtree T,,3 Ky,

4/15/2004 CSE 373 SP 04 -- Splay Trees 22
and B-Trees

11

DSB.13
B-Tree Nonleaf Node

Prag kgl kg2 lpri-ag kg | Kig-1] [PLg] |

T

x < K[1] K[i-1]£y<K]i] K[g-1] £ 2

* The Ksare keys
~ 41081

A A

X<4 4£x<8 8 £x

* The Ps are pointers to subtrees.

4/15/2004 CSE 373 SP 04 -- Splay Trees 23
and B-Trees

_ DSB.14
Detailed Leaf Node Structure (B+ Tree)

K[1] |R[1] | |K[q-1] |R[q-1] |N¢=\x'r

» The Ks are keys (assume unique).

» The Rs are pointers to records with those keys.

o E:e_ jli; “?IE :: t leaf inkey order (B+-tree)
REV-t-SEREP | | | —|_>
1UO | 11 |

v v v

a

data record 95 nes|Mark |19 |4

4/15/2004 CSE 373 SP 04 -- Splay Trees 24
and B-Trees

12

Searching in B-trees

e B-tree of order 3: also known as 2-3 tree (2to 3
children)

|- means empty slot

» Examples: Search for 9, 14, 12

* Note: If leaf nodes are connected as a Linked List, B-
tree is called a B+ tree — Allows sorted list to be

accessed easily
4/15/2004 CSE 373 SP 04 -- Splay Trees 25
and B-Trees

DSB.17
Searchinga B-TreeT for aKey ValueK

Find(ElementType K, Btree T)
{
B=T,
while (B is not a leaf)
{
find the Pi in node B that points to
the proper subtree that K will bein;

B =P
} How would you search
/* Now we're at aleaf */ for akey in anode?

if key K isthe jthkey in leaf B,
use the jth record pointer to find the
associated record;

else/* Kisnotin leaf B */ report failure;
1

J

4/15/2004 CSE 373 SP 04 -- Splay Trees 26
and B-Trees

13

Inserting into B-Trees

* Insert X: Do a Find on X and find appropriate leaf node
> If leaf node is not full, fill in empty slot with X
« E.g. Insert5

> If leaf node is full, splitleaf node and adjust parents up to root
node

« E.g. Insert 9

Assume M=L=3,
so (6 7 8) is full.

4/15/2004

CSE 373 SP 04 -- Splay Trees 27
and B-Trees

DS.B.18
Inserting a New Key in aB-Treeof Order M (and L=M)

Insert(ElementType K, Btree B)

find the leaf node LB of B in which K belongs;
if notfull(LB) insert K into LB;
else

{

split LB into two nodes LB and LB2 with

j=é&M+1)/20keysin LB and therest in LB2;
LB LB2

v

v

1 | e
KIIT RO KOT RIT RKOFIROFI - K[MFI RIM+1]

if (IsNull(Parent(LB)))

CreateNewRoot(LB, K[j+1], LB2);
else

Insertinternal(Parent(LB), K[j+1],LB2);
}
}

4/15/2004 CSE 373 SP 04 -- Splay Trees

28
and B-Trees

14

DS.B.19

Inserting a (Key,Ptr) Pair into an Internal Node

If the node is not full, insert them in the proper
place and return.

If the node is aready full (M pointers, M-1keys),
find the place for the new pair and split

the adjusted (Key,Ptr) sequence into two
internal nodes with

j = &M+1)/20 pointers and j-1 keys in the first,
the next key isinserted in the node’s parent,

and the rest in the second of the new pair.

4/15/2004 CSE 373 SP 04 -- Splay Trees 29
and B-Trees

Example of Insertions into a
th M=3 L=

o oh Oy © b

4/15/2004 CSE 373 SP 04 -- Splay Trees 30
and B-Trees

15

Deleting From B-Trees

» Delete X : Do a find and remove from leaf
> Leaf underflows — borrow from a neighbor
« Eg.11

> Leaf underflows and can’t borrow — merge nodes, delete
parent

4/15/2004 CSE 373 SP 04 -- Splay Trees 31
and B-Trees

Run Time Analysis of B-Tree

— Operations————————

e For a B-Tree of order M
> Each internal node has up to M-1 keys to search
> Each internal node has between é&v/2uand M children
> Depth of B-Tree storing N items is O(log g5 N)

e Find: Run time is:

> O(log M) to binary search which branch to take at each
node. But M is small compared to N.

> Total time to find an item is O(depth*log M) = O(log N)

4/15/2004 CSE 373 SP 04 -- Splay Trees 32
and B-Trees

16

DS.B.22

How Do We Sdlect the Order M?

- Ininternal memory, small orders, like 3 or 4
arefine.

- On disk, we have to worry about the number
of disk accesses to search the index and get
to the proper leaf.

Rule: Choose thelargest M so that an internal
node can fit into one physical block of the disk.

Thisleads to typical M’s between 32 and 256
And keeps the trees as shallow as possible.

4/15/2004 CSE 373 SP 04 -- Splay Trees 33
and B-Trees

Summary of Search Trees

» Problem with Binary Search Trees: Must keep tree balanced to
allow fast access to stored items

» AVL trees: Insert/Delete operations keep tree balanced
» Splay trees: Repeated Find operations produce balanced trees
* Multi-way search trees (e.g. B-Trees):

> More than two children per node allows shallow trees; all
leaves are at the same depth.

> Keeping tree balanced at all times.
> Excellent for indexes in database systems.

4/15/2004 CSE 373 SP 04 -- Splay Trees 34
and B-Trees

17

