Splay Trees and B-Trees

CSE 373
Data Structures

Readings

» Reading
> Goodrich and Tamassia, Chapter 9:
> Splay trees in 3 edition only (pp.432443)
> B-trees in both editions: section 9.6.

4[712004 CSE 373 SP 04 --Splay Trees
and B-Trees

Self adjusting Trees

« Ordinary binary search trees have no balance
conditions
> what you get from insertion order is it
« Balanced trees like AVL trees enforce a
balance condition when nodes change
> tree is always balanced after an insert or delete
« Self-adjusting trees get reorganized over time
as nodes are accessed
> Tree adjusts after insert, delete, or find

4[7/12004 CSE 373 SP 04 -Splay Trees 3
A BT

Splay Trees

« Splay trees are tree structures that:
> Are not perfectly balanced all the time
> Data most recently accessed is near the root.
(principle of locality; 80-20 “rule”)
¢ The procedure:

> After node X is accessed, perform “splaying”
operations to bring X to the root of the tree.

> Do this in a way that leaves the tree more
balanced as a whole

4/7/2004 CSE 373 SP 04 --Splay Trees
B

Splay Tree Terminology

« Let X be a non-root node with 3 2 ancestors.
* Pisits parent node.

TGS gra Upa entnoae.

LA S

4/7/2004 CSE 373 SP 04 -Splay Trees 5

and B-Trees

Zig-Zig and Zig-Zaq

Parent and grandparent Parent and grandparent
in same direction. in different directions.

zig-z<g\

4/7/2004 CSE 373 SP 04 --Splay Trees

and B-Trees

Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

parent
element
left right

2. When X is accessed, apply one of six rotation routines.

« Single Rotations (X has a P (the root) but no G)
ZigFromLeft, ZigFromRight

« Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

4/7/2004 CSE 373 SP 04 —-Splay Trees 7
and B-Trees

Zig at depth 1 (root)

« “Zig" is just a single rotation, as in an AVL tree
¢ Let R be the node that was accessed (e.g. using

Find) ' ot
R C ZigFromLeft A
/\ ' /\

A B B C
« ZigFromLeft moves R to the top ® faster access
next time

4[712004 CSE 373 SP 04 --Splay Trees 8
and B-Trees

Zig at depth 1

» Suppose Q is now accessed using Find

root

R’ C ZigfromRight | A NQ
/'\ /'\
A B B C

« ZigFromRight moves Q back to the top

4[7/12004 CSE 373 SP 04 -Splay Trees 9
A BT

Zig-Zag operation

« “Zig-Zag’ consists of two rotations of the
opposite direction (assume R is the node that

was accessed) e
% - BN
\ | . S b‘)
/ D (zigFromRight) l,} Y (ZigFromLeft) ;G\ S
A Q-1 A B CD
A FAY
B C A B

igZagEroml eft

4/7/2004 CSE 373 SP 04 --Splay Trees 10
B

Zig-Zig operation

* “Zig-Zig” consists of two single rotations
of the same direction (R is the node that

was accessed) ~ FON
N M)
3 P Q
Fle b X

U D Semisplay Full splay A
A —ge A
R C (ZigFromLefty & B € D (ZigFromLefty B F
A [
A B c D
TgZIgFTomLert
»
4/7/2004 CSE 373 SP 04 -Splay Trees 11

and B-Trees

Decreasing depth -

11 e 1 L 11
clUlUUouoube
P P K
7\ I\ " VAN
F F A 0O T Q
Ia\ @ N noN
R E E A S DFP
A\ I M i
o A S B R E F B C EF
@) Iy I
y MO o BE R C D
i A
A B [o v
a 1] 4] id
Find(m N Fdm
4/7/2004 CSE 373 SP 04 --Splay Trees 12

and B-Trees

Splay Tree Insert and Delete

* Insert x
> Insert x as normal then splay x to root.
* Delete x

> Splay x to root and remove it. (note: the node does
not have to be a leaf or single child node like in
BST delete.) Two trees remain, right subtree and
left subtree.

> Splay the max in the left subtree to the root

> Attach the right subtree to the new root of the left
subtree.

4/7/2004 CSE 373 SP 04 —-Splay Trees 13
and B-Trees

Example Insert

* Inserting in order 1,2,3,...,8
 Without self-adjustment

O(n?) time for n Insert

4[712004 CSE 373 SP 04 --Splay Trees 14
and B-Trees

With Self-Adjustment

O
055
o

4[7/12004 CSE 373 SP 04 -Splay Trees 15
A BT

With Self-Adjustment

ZigEromRight -

Each Insert takes O(1) time therefore O(n) time for n Insert!!

4/7/2004 CSE 373 SP 04 --Splay Trees 16
B

Example Deletion

10 SPlay (ZigZzag)
5 5 1
@ g\ 13 20 CzD 6 9 5
| i3 2

—Splay-zig) remo;

attach @; T
®

2 6 9 A5

2
920 13 2

4/7/2004 CSE 373 SP 04 -Splay Trees 17

and B-Trees

Analysis of Splay Trees

« Splay trees tend to be balanced

> M operations takes time O(M log N) for M > N
operations on N items. (proof is difficult)

> Amortized O(log n) time.
« Splay trees have good “locality” properties
> Recently accessed items are near the root of the

tree.
> Items near an accessed one are pulled toward the
root.
4/7/2004 CSE 373 SP 04 --Splay Trees 18

and B-Trees

Beyond Binary Search Trees:
Multi-Way Trees

» Example: B-tree of order 3has 2 or 3
children per node

» Search for 8

4/7/2004 CSE 373 SP 04 —-Splay Trees
and B-Trees

B-Tree Detalls

Each (non-leaf) internal node of a B-tree has:
> Between év/2uand M children.

Keysare ordered so that:
Ky < Ko< <Kyy

4[7/12004 CSE 373 SP 04 -Splay Trees
A BT

B-Trees

B-Trees are multi -way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The rootis either a leaf or has between 2 and M children.

2. All nonleaf nodes (except the root) have between évi/2u
and M children.

3. All leaves are at the same depth.

Il data records are stored at the leaves.

Internal nodes have “keys” guiding to the leaves.
eaves store between é./2u1and L data records,

here L can be equal to M (default) or can be different.
4/7/2004

CSE 373 SP 04 --Splay Trees 20
and B-Trees

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree T;is the ith child of the node:
all keys in T, must be between keys k_, and k
ie. k, £T;<k
k., is the smallest key in T
All keys in first subtree T, <k,
All keys in last subtree T, 3 ky.,

4/7/2004

CSE 373 SP 04 --Splay Trees 22
B

DSB.13
B-TreeNonleaf Node
[[T 1T [T1 1 |
T K[... Ki-4 P[lil] KT ... K[q-1 P[F]
PAAN PN PAN
X y z
X <K[1] K[i-1]£y<K[i] Klg-1] £z
* TheKsarekeys

» The Psarepointersto subtrees.

X<4 4Ex<8 8 £x

4/7/2004 CSE 373 SP 04 -Splay Trees

and B-Trees

DSB.14
Detailed Leaf Node Structure (B+ Tree)

RIIT RO - KO RO Next

» The Ks are keys (assume unique).

* The Rs are pointersto recordswith those keys.

* T e KPS o The ey Leat inkey priter (BFTeE)
1 1 1 1
75 189 o5 ~103 115 | .

data record m

4/7/2004 CSE 373 SP 04 --Splay Trees

24

and B-Trees

Searching in B-trees

« B-tree of order 3: also known as2-3 tree (2to 3

children)

« Examples: Search for 9, 14, 12

« Note: If leaf nodes are connected as a Linked List, B-
tree is called a B+ tree — Allows sorted list to be

accessed easily
4[7/12004 CSE 373 SP 04 -Splay Trees 25

and B-Trees

DSB.17
SearchingaB-TreeT for aKey ValueK

indElementTypeK, BtreeT)

=T;

hile (B isnot aleaf)

{

find the Pi in node B that pointsto
the proper subtree that K will bein;

B=Pi;

} How would you search

Now we'reat aleaf */ for akey inanode?

if key K isthejth key in leaf B,

use thejth record pointer to find the

associated record;
dlse/* Kisnotinleaf B */ report failure;

4[712004 CSE 373 SP 04 --Splay Trees 26
and B-Trees

Inserting into B-Trees

« Insert X: Do a Find on X and find appropriate leaf node
> If leaf node is not full, fill in empty slot with X
* E.g.Insert5

> If leaf node is full, splitleaf node and adjust parents up to root
node

« E.g.Insert9

4[7/12004 CSE 373 SP 04 -Splay Trees 27
A BT

DS.B.18
InsertingaNew Key in aB-Treeof Order M (and L=M)

Insert(ElementTypeK, Btree B)

{
find theleaf node LB of B inwhich K belongs;

if notfull (LB) insert K into L B;
else
{
split LB into two nodes LB and LB2 with
j =&M+1)/20keysinLB andtherestin LB2;
B L[BZ

K[1] R[] ... K[j] R[] K[+1] R[+1] ... K[M+1] R[M+1]

if (IsNull (Parent(LB)))
CreateNewRoot (LB, K[j+1], LB2);

else
Insertinternal (Parent(LB), K[j+1],LB2);

4/7/2004 CSE 373 SP 04 --Splay Trees 28
B

DSB.19

Inserting a (Key,Ptr) Pair into an Internal Node

If thenodeisnot full, insert them in the proper
placeand return.

If thenodeisaready full (M pointers, M-1keys),
find the place for the new pair and split
the adjusted (KeyPtr) sequenceintotwo
internal nodes with
j = gM+1)/2Gpointersand j-1 keysin thefirst,

thenext key isinserted in the node sparent

and therest in the second of the new pair.

4/7/2004 CSE 373 SP 04 -Splay Trees 29

and B-Trees

Example of Insertions into a
V=3 t=2—""

Insertion Sequence: 9, 5, 1, 7, 3,12
o[] o
2 519 3

4/7/2004 CSE 373 SP 04 --Splay Trees 30

and B-Trees

Deleting From B-Trees

» Delete X : Do a find and remove from leaf
> Leafunderflows — borrow from a neighbor
- Eg. 11
> Leaf underflows and can't borrow — merge nodes, delete
parent

4/7/2004 CSE 373 SP 04 —-Splay Trees 31
and B-Trees

Run Time Analysis of B-Tree
Qperations

e For a B-Tree of order M
> Each internal node has up to M-1 keys to search
> Each internal node has between éM/2uand M children
> Depth of B-Tree storing N items is O(10g g4, N)
¢ Find: Run time is:
> O(log M) to binary search which branch to take at each
node. But M is small compared to N.
> Total time to find an item is O(depth*log M) = O(log N)

4[712004 CSE 373 SP 04 --Splay Trees 32
and B-Trees

DSB.22

How Do We Select the Order M?

- Ininternal memory, small orders, like 3 or 4
arefine.

- On disk, we have to worry about the number
of disk accesses to search the index and get

Ltotheproperleaf

Rule: Choose thelargest M so that an interna
node can fit into one physical block of the disk.

Thisleadsto typical M’s between 32 and 256
And keeps the trees as shallow as possible.

4[7/12004 CSE 373 SP 04 -Splay Trees 33
A BT

Summary of Search Trees

« Problem with Binary Search Trees: Must keep tree balanced to
allow fast access to stored items

» AVL trees: Insert/Delete operations keep tree balanced
» Splay trees: Repeated Find operations produce balanced trees
* Multi-way search trees (e.g. B-Trees):
> More than two children per node allows shallow trees; all
leaves are at the same depth.
> Keeping tree balanced at all times.
> Excellent for indexes in database systems.

4/7/2004 CSE 373 SP 04 --Splay Trees 34
B

