
1

Splay Trees and B-Trees

CSE 373
Data Structures

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

2

Readings

• Reading
› Goodrich and Tamassia, Chapter 9:

› Splay trees in 3rd edition only (pp.432-443)

› B-trees in both editions: section 9.6.

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

3

Self adjusting Trees

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed
› Tree adjusts after insert, delete, or find

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

4

Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time
› Data most recently accessed is near the root.

(principle of locality; 80-20 “rule”)

• The procedure:
› After node X is accessed, perform “splaying”

operations to bring X to the root of the tree.
› Do this in a way that leaves the tree more

balanced as a whole

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

5

• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.

P

G

X

G

P

X

G

P

X

G

P

X

Splay Tree Terminology

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

6

Zig-Zig and Zig-Zag

4

G 5

1 P zig-zag

G

P 5

X 2

zig-zig

X

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

2

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

7

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

• Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Tree Operations

parent

rightleft
element

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

8

Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using

Find)

• ZigFromLeft moves R to the top →faster access
next time

ZigFromLeft

root

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

9

Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top

ZigFromRight

root

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

10

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

11

Zig-Zig operation

• “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

12

Decreasing depth -
"autobalance"

Find(T) Find(R)

3

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

13

Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x
› Splay x to root and remove it. (note: the node does

not have to be a leaf or single child node like in
BST delete.) Two trees remain, right subtree and
left subtree.

› Splay the max in the left subtree to the root
› Attach the right subtree to the new root of the left

subtree.

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

14

Example Insert

• Inserting in order 1,2,3,…,8
• Without self-adjustment

1
2

3
4

5
6

7
8

O(n2) time for n Insert

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

15

With Self-Adjustment

1

2

1 2

1

ZigFromRight

2

1 3

ZigFromRight
2

1

3

1

2

3

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

16

With Self-Adjustment

ZigFromRight2

1

34
4

2

1

3

4

Each Insert takes O(1) time therefore O(n) time for n Insert!!

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

17

Example Deletion
10

155

201382

96

10

15

5

2013

8

2 96

splay

10

15

5

2013

2 96

remove

10

15

5

2013

2 9

6
Splay (zig)

attach

(Zig-Zag)

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

18

Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N

operations on N items. (proof is difficult)
› Amortized O(log n) time.

• Splay trees have good “locality” properties
› Recently accessed items are near the root of the

tree.
› Items near an accessed one are pulled toward the

root.

4

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

19

• Example: B-tree of order 3 has 2 or 3
children per node

• Search for 8

Beyond Binary Search Trees:
Multi-Way Trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

20

B-Trees are multi -way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between M/2

and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.
Leaves store between L/2 and L data records,
where L can be equal to M (default) or can be different.

B-Trees

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

21

B-Tree Details

Each (non-leaf) internal node of a B-tree has:
› Between M/2 and M children.
› up to M-1 keys k1 < k2 < ... < kM-1

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM-1. ki-1 kik1

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

22

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree T i is the ith child of the node:

all keys in T i must be between keys ki- 1 and ki

i.e. ki-1 ≤ T i < ki

ki- 1 is the smallest key in T i

All keys in first subtree T1 < k1
All keys in last subtreeTM ≥ kM-1

k1

TTii

. kki-1 kkii

TTMTT11

kkM-1

.

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

23

DS.B.13
B-Tree Nonleaf Node

P[1] K[1] . . . K[i-1] P[i-1] K[i] . . . K[q-1] P[q]

y z

x < K[1] K[i-1]≤y<K[i] K[q-1] ≤ z

• The Ks are keys

• The Ps are pointers to subtrees.

x

| 4 | | 8 |

x<4 4≤x<8 8 ≤x

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

24

DS.B.14
Detailed Leaf Node Structure (B+ Tree)

K[1] R[1] . . . K[q-1] R[q-1] Next

• The Ks are keys (assume unique).

• The Rs are pointers to records with those keys.

• The Next link points to the next leaf in key order (B+-tree).
75 89 95 103 115

95 Jones Mark 19 4data record

5

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

25

Searching in B-trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3
children)

• Examples: Search for 9, 14, 12
• Note: If leaf nodes are connected as a Linked List, B-

tree is called a B+ tree – Allows sorted list to be
accessed easily

- means empty slot

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

26

DS.B.17
Searching a B-Tree T for a Key Value K

Find(ElementType K, Btree T)
{
B = T;
while (B is not a leaf)

{
find the Pi in node B that points to

the proper subtree that K will be in;

B = Pi;
}

/* Now we’re at a leaf */

if key K is the jth key in leaf B,
use the jth record pointer to find the
associated record;

else /* K is not in leaf B */ report failure;
}

How would you search
for a key in a node?

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

27

Inserting into B-Trees
• Insert X: Do a Find on X and find appropriate leaf node

› If leaf node is not full, fill in empty slot with X
• E.g. Insert 5

› If leaf node is full, splitleaf node and adjust parents up to root
node

• E.g. Insert 9 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-Assume M=L=3,
so (6 7 8) is full.

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

28

DS.B.18
Inserting a New Key in a B-Tree of Order M (and L=M)

Insert(ElementType K, Btree B)
{
find the leaf node LB of B in which K belongs;
if notfull (LB) insert K into LB;
else

{
split LB into two nodes LB and LB2 with
j = (M+1)/2 keys in LB and the rest in LB2;

if (IsNull(Parent(LB)))
CreateNewRoot(LB, K[j+1], LB2);

else
InsertInternal (Parent(LB), K[j+1],LB2);

}
}

K[1] R[1] . . . K[j] R[j] K[j+1] R[j+1] . . . K[M+1] R[M+1]

LB LB2

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

29

DS.B.19

Inserting a (Key,Ptr) Pair into an Internal Node

If the node is not full, insert them in the proper
place and return.

If the node is already full (M pointers, M-1 keys),
find the place for the new pair and split
the adjusted (Key,Ptr) sequence into two
internal nodes with

j = (M+1)/2 pointers and j-1 keys in the first,

the next key is inserted in the node’s parent,

and the rest in the second of the new pair.

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

30

Example of Insertions into a
B+ tree with M=3, L=2

Insertion Sequence: 9, 5, 1, 7, 3,12

9 5 | 9

1| | 5 | 9 |

| 5 | 1 2 3 | 5 | | 7 |

1| | 7 | 9 |5 | |

4

| 5 | | 7 |

1| 3 | 5 | | 7 | 9 |

5

1| 3 | 5 | | 7 | | 9 | 12 |

| 5 | | 9 |

| 7 |

6

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

31

Deleting From B-Trees

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11
› Leaf underflows and can’t borrow – merge nodes, delete

parent
• E.g. 17 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

32

Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search
› Each internal node has between M/2 and M children
› Depth of B-Tree storing N items is O(log M/2 N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each

node. But M is small compared to N.
› Total time to find an item is O(depth*log M) = O(log N)

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

33

DS.B.22

How Do We Select the Order M?

- In internal memory, small orders, like 3 or 4
are fine.

- On disk, we have to worry about the number
of disk accesses to search the index and get
to the proper leaf.

Rule: Choose the largest M so that an internal
node can fit into one physical block of the disk.

This leads to typical M’s between 32 and 256
And keeps the trees as shallow as possible.

4/7/2004 CSE 373 SP 04 --Splay Trees
and B-Trees

34

Summary of Search Trees
• Problem with Binary Search Trees: Must keep tree balanced to

allow fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce balanced trees
• Multi -way search trees (e.g. B-Trees):

› More than two children per node allows shallow trees; all
leaves are at the same depth.

› Keeping tree balanced at all times.
› Excellent for indexes in database systems.

