
1

Stacks and Queues

CSE 373
Data Structures

3/28/04 Stacks and Queues 2

Readings

• Reading
› Goodrich and Tamassia, Chapter 4

3/28/04 Stacks and Queues 3

Stack ADT
• A list for which Insert and

Delete are allowed only at one
end of the list (the top)
› the implementation defines which

end is the "top"
› LIFO – Last in, First out

• Push: Insert element at top
• Pop: Remove and return top

element (aka TopAndPop)
• IsEmpty: test for emptyness

a tray stack

3/28/04 Stacks and Queues 4

An Important Application of
Stacks

• Parsing phase in compilers

 yields the reverse Polish (postfix)
notation:

       ab+c*d+ (traversal of a binary tree in
postorder; see Lecture 7)

(a+b)*c+d
d+

* c

a  +    b

parse tree

3/28/04 Stacks and Queues 5

Another Important Application
of Stacks

• Call stack in run time systems
› When a function (method, procedure) is

called the work area (local variables,
copies of parameters, return location in
code) for the new function is pushed on to
the stack.  When the function returns the
stack is popped.

› So, calling a recursive procedure with a
depth of N requires O(N) space.

3/28/04 Stacks and Queues 6

Two Basic Implementations of
Stacks

• Linked List
› Push is InsertFront
› Pop is DeleteFront (Top is “access” the

element at the top of the stack)
› IsEmpty is test for null

• Array
› The k items in the stack are the first k items

in the array.



2

3/28/04 Stacks and Queues 7

Linked List Implementation

• Stack of blobs

null

a blobnode

Pointer to
blob

Pointer to
next node

3/28/04 Stacks and Queues 8

Array Implementation

• Stack of blobs

1     2      3      4     5      6     7      8      9     10    11   12
A

holder = blob pointer array
size = number in stack
maxsize = max size of stack

topbottom

4
12

3/28/04 Stacks and Queues 9

Push and Pop (array impl.)
IsEmpty(A : blobstack pointer) : boolean {
  return A.size = 0
}
IsFull(A : blobstack pointer) : boolean {
  return A.size = A.maxsize;
}
Pop(A : blobstack pointer) : blob pointer {
// Precondition: A is not empty //
  A.size := A.size – 1;
  return A.holder[A.size + 1];
}
Push(A : blobstack pointer, p : blob pointer): {
// precondition: A is not full//
  A.size := A.size + 1;
  A.holder[A.size] := p;
}
  

3/28/04 Stacks and Queues 10

Linked Lists vs Array
• Linked list implementation

+ flexible – size of stack can be anything
+ constant time per operation
- Call to memory allocator can be costly

• Array Implementation
+ Memory preallocated
+ constant time per operation.
- Not all allocated memory is used
- Overflow possible - Resizing can be used but

some ops will be more than constant time.
-

3/28/04 Stacks and Queues 11

Queue

• Insert at one end of List, remove at the
other end

• Queues are “FIFO” – first in, first out
• Primary operations are Enqueue and

Dequeue
• A queue ensures “fairness”

› customers waiting on a customer hotline
› processes waiting to run on the CPU

3/28/04 Stacks and Queues 12

Queue ADT

• Operations:
› Enqueue - add an entry at the end of the

queue (also called “rear” or “tail”)
› Dequeue - remove the entry from the front

of the queue
› IsEmpty
› IsFull may be needed



3

3/28/04 Stacks and Queues 13

A Sample of Applications of
Queues

• File servers: Users needing access to
their files on a shared file server
machine are given access on a FIFO
basis

• Printer Queue: Jobs submitted to a
printer are printed in order of arrival

• Phone calls made to customer service
hotlines are usually placed in a queue

3/28/04 Stacks and Queues 14

Pointer Implementation

null

front
rear

Q

Header
Not always 
there

front rear

3/28/04 Stacks and Queues 15

List Implementation
IsEmpty(Q : blobqueue pointer) : boolean {
  return Q.front = Q.rear
}
Dequeue(Q : blobqueue pointer) : blob pointer {
// Precondition: Q is not empty //
  B : blob pointer;
  B := Q.front.next;
  Q.front.next := Q.front.next.next;
  return B;
}
Enqueue(Q : blobqueue pointer, p : blob pointer): {
  Q.rear.next := new node;
  Q.rear := Q.rear.next;
  Q.rear.value := p;
}
  

3/28/04 Stacks and Queues 16

Array Implementation

• Circular array

0     1     2      3      4     5      6     7      8      9     10    11  
Q

holder = blob pointer array
size = number in queue
front = index of front of queue
maxsize = max size of queue

12
2
4

rear = (front + size) mod maxsize

front rear

3/28/04 Stacks and Queues 17

Wrap Around

0     1     2      3      4     5      6     7      8      9     10    11  
Q

12
10
4

frontrear

rear = (front + size) mod maxsize
        = (10 + 4) mod 12 = 14 mod 12 = 2

3/28/04 Stacks and Queues 18

Enqueue

0     1     2      3      4     5      6     7      8      9     10    11  
Q

12
10
4

frontrear

p



4

3/28/04 Stacks and Queues 19

Enqueue

0     1     2      3      4     5      6     7      8      9     10    11  
Q

12
10
5

frontrear

p

3/28/04 Stacks and Queues 20

Enqueue

Enqueue(Q : blobqueue pointer, p : blob pointer) : {
// precondition : queue is not full //
Q.holder[(Q.front + Q.size) mod Q.maxsize] := p;
Q.size := Q.size + 1;
}

Constant time!

3/28/04 Stacks and Queues 21

Dequeue

0     1     2      3      4     5      6     7      8      9     10    11  
Q

12
10
4

frontrear

3/28/04 Stacks and Queues 22

Dequeue

0     1     2      3      4     5      6     7      8      9     10    11  
Q

12
11
3

frontrear

return

3/28/04 Stacks and Queues 23

Try Dequeue

• Define the circular array implementation
of Dequeue

3/28/04 Stacks and Queues 24

Solution to Dequeue

Dequeue(Q : blobqueue pointer) : blob pointer {
// precondition : queue is not empty //
p : blob pointer
p := Q.holder[Q.front];
Q.front := (Q.front + 1) mod Q.maxsize;
Q.size := Q.size - 1;
return p;
}


