
1

Trees

CSE 373
Data Structures

3/28/04 Trees 2

Readings

• Reading
› Goodrich and Tamassia, Chapter 6.

3/28/04 Trees 3

Why Do We Need Trees?
• Lists, Stacks, and Queues are linear

relationships
• Information often contains hierarchical

relationships
› File directories or folders
› Moves in a game
› Hierarchies in organizations

• Can build a tree to support fast searching
3/28/04 Trees 4

Tree Jargon

• root
• nodes and edges
• leaves

• parent, children, siblings
• ancestors, descendants

• subtrees

• path, path length
• height, depth

A

B C D

E F

3/28/04 Trees 5

More Tree Jargon
• Length of a path = number

of edges
• Depth of a node N = length

of path from root to N
• Height of node N = length of

longest path from N to a leaf
• Depth of tree = depth of

deepest node
• Height of tree = height of

root

A

B C D

E F

depth=0,
height = 2

depth = 2,
height=0

depth=1,
height =0

3/28/04 Trees 6

Definition and Tree Trivia

• A tree is a set of nodes,i.e., either
› it’s an empty set of nodes, or
› it has one node called the root from which zero or

more trees (subtrees) descend
• Two nodes in a tree have at most one path

between them
• Can a non-zero path from node N reach node

N again?
No. Trees can never have cycles (loops)

2

3/28/04 Trees 7

Paths

• A tree with N nodes always has N-1
edges (prove it by induction)
Base Case: N=1 one node, zero edges

Inductive Hypothesis: Suppose that a tree with N=k nodes
always has k-1 edges.

Induction: Suppose N=k+1…
The k+1st node must connect
to the rest by 1 or more edges.
If more, we get a cycle. So it connects by just 1 more edge

k
+1

3/28/04 Trees 8

Implementation of Trees

• One possible pointer-based Implementation
› tree nodes with value and a pointer to each child
› but how many pointers should we allocate space for?

• A more flexible pointer-based implementation
› 1st Child / Next Sibling List Representation
› Each node has 2 pointers: one to its first child and one to

next sibling
› Can handle arbitrary number of children

3/28/04 Trees 9

Arbitrary Branching

A

B C D

E F

A

B C D

E F
Data

FirstChild Sibling

Nodes
of same
depth

3/28/04 Trees 10

Binary Trees

• Every node has at most two children
› Most popular tree in computer science

• Given N nodes, what is the minimum depth of a
binary tree? (This means all levels but the last are full!)
› At depth d, you can have N = 2d to N = 2d+1-1 nodes

 Nlogd implies 12N2 2min
1dd =−≤≤ +

3/28/04 Trees 11

Minimum depth vs node count

• At depth d, you can have N = 2d to 2d+1-1
nodes

• minimum depth d is Θ(log N)
1

2 3

6 74 5

T(n) = Θ(f(n)) means
T(n) = O(f(n)) and f(n) = O(T(n)),
i.e. T(n) and f(n) have the same
growth rate

d=2
N=22 to 23-1 (i.e, 4 to 7 nodes)

3/28/04 Trees 12

Maximum depth vs node
count

• What is the maximum depth of a binary
tree?
› Degenerate case: Tree is a linked list!
› Maximum depth = N-1

• Goal: Would like to keep depth at
around log N to get better performance
than linked list for operations like Find

3

3/28/04 Trees 13

A degenerate tree

1

5

2

3

4

7

6

A linked list with high overhead
and few redeeming characteristics

3/28/04 Trees 14

Traversing Binary Trees

• The definitions of the traversals are recursive
definitions. For example:
› Visit the root
› Visit the left subtree (i.e., visit the tree whose root

is the left child) and do this recursively
› Visit the right subtree (i.e., visit the tree whose root

is the right child) and do this recursively
• Traversal definitions can be extended to

general (non-binary) trees

3/28/04 Trees 15

Traversing Binary Trees

• Preorder: Node, then Children (starting
with the left) recursively + * + A B C D

• Inorder: Left child recursively, Node,
Right child recursively A + B * C + D

• Postorder: Children recursively, then Node
A B + C * D +

A

*

B

C

D

+

+

3/28/04 Trees 16

Binary Search Trees
• Binary search trees are binary trees in

which
› all values in the node’s left subtree

are less than node value
› all values in the node’s right subtree

are greater than node value
• Operations:

› Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree
in inorder?

9

5

10

96 99

94

97

3/28/04 Trees 17

Operations on Binary Search
Trees

• How would you implement these?
› Recursive definition of binary

search trees allows recursive routines
› Call by reference helps too

• FindMin
• FindMax
• Find
• Insert
• Delete

9

5

10

96 99

94

97

3/28/04 Trees 18

Binary SearchTree
9

5

10

96 99

94

97

data

left right

9

5 94

10 97

96 99

4

3/28/04 Trees 19

Find
Find(T : tree pointer, x : element): tree pointer {
case {
 T = null : return null;
 T.data = x : return T;
 T.data > x : return Find(T.left,x);
 T.data < x : return Find(T.right,x)
}
}

3/28/04 Trees 20

FindMin

• Design recursive FindMin operation that
returns the smallest element in a binary
search tree.
› FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
???
}

3/28/04 Trees 21

Insert Operation
• Insert(T: tree, X: element)

› Do a “Find” operation for X
› If X is found update

(no need to insert)
› Else, “Find” stops at a

NULL pointer
› Insert Node with X there

• Example: Insert 95

10

96 99

94

97 ?

3/28/04 Trees 22

Insert 95

10

96 99

94

97
10

96 99

94

97

95

3/28/04 Trees 23

Insert Done with call-by-
reference

Insert(T : reference tree pointer, x : element) : integer {
if T = null then
 T := new tree; T.data := x; return 1;//the links to

 //children are null
case
 T.data = x : return 0;
 T.data > x : return Insert(T.left, x);
 T.data < x : return Insert(T.right, x);
endcase
}

Advantage of reference parameter is that the call has
the original pointer not a copy.

This is where call by
reference makes a
difference.

3/28/04 Trees 24

Call by Value vs
Call by Reference

• Call by value
› Copy of parameter is used

• Call by reference
› Actual parameter is used

p pF(p)

used inside call of F

5

3/28/04 Trees 25

Delete Operation

• Delete is a bit trickier…Why?
• Suppose you want to delete 10
• Strategy:

› Find 10
› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?

94

10 97

5 24

11

17

3/28/04 Trees 26

Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)

94

10 97

5 24

11

17

3/28/04 Trees 27

Delete “5” - No children

Find 5 node

Then Free
the 5 node and
NULL the
pointer to it

94

10 97

5 24

11

17

94

10 97

5 24

11

17

3/28/04 Trees 28

Delete “24” - One child

Find 24 node

Then Free
the 24 node and
replace the
pointer to it with
a pointer to its
child

94

10 97

5 24

11

17

94

10 97

5 24

11

17

3/28/04 Trees 29

Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then (recursively)
Delete node with
smallest value
in right subtree
Note: it cannot
have two children
(why?)

94

10 97

5 24

11

17

94

11 97

5 24

11

17

3/28/04 Trees 30

Then Delete “11” - One child

Remember
11 node

Then Free
the 11 node and
replace the
pointer to it with
a pointer to its
child

94

11 97

5 24

11

17

94

11 97

5 24

11

17

6

3/28/04 Trees 31

Remove from Text
private BinaryNode remove(Comparable x, BinaryNode t) {
if (t == null) return t; // not found
if (x.compareTo(t.element) < 0)
 t.left = remove(x, t.left); // search left
else if (x.compareTo(t.element) > 0)
 t.right = remove(x, t.right); // search right
else if (t.left != null && t.right != null) // found it; two children
 { t.element = findMin (t.right).element; // find the min, replace,
 t.right = remove(t.element, t.right); } and remove it
else t = (t.left != null) ? t.left : t.right; // found it; one child
return t; }

3/28/04 Trees 32

FindMin Solution

FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
if T.left = null return T
else return FindMin(T.left)
}

Note: Look at the “remove” method in the book.

