Trees

CSE 373
Data Structures

Readings

* Reading

» Goodrich and Tamassia, Chapter 6.

3/28/04 Trees 2

Why Do We Need Trees?

« Lists, Stacks, and Queues are linear
relationships

Information often contains hierarchical
relationships

» File directories or folders

> Moves in a game

> Hierarchies in organizations

Can build a tree to support fast searching

3/28/04 Trees 3

Tree Jargon

* root
* nodes and edges e
* leaves

* parent, children, siblings e Q Q

« ancestors, descendants

* subtrees e e

* path, path length
* height, depth

3/28/04 Trees 4

More Tree Jargon

» Length of a path = number depth=0,
of edges height = 2
» Depth of a node N = length N °

of path from root to N

» Height of node N = length of
longest path from N to a leaf 9 @ \

* Depth of tree = depth of depth=1,
deepest node e e height =0
» Height of tree = height of 7
root depth =2,
height=0

3/28/04 Trees 5

Definition and Tree Trivia

« Atree is a set of nodes,i.e., either
> it's an empty set of nodes, or
> it has one node called the root from which zero or

more trees (subtrees) descend

* Two nodes in a tree have at most one path
between them

» Can a non-zero path from node N reach node
N again?

No. Trees can never have cycles (loops)

3/28/04 Trees 6

Paths

+ A tree with N nodes always has N-1
edges (prove it by induction)

Base Case: N=1 one node, zero edges

Inductive Hypothesis: Suppose that a tree with N=k nodes

always has k-1 edges. B .
Induction: Suppose N=k+1... +,1~'1/ \\
The k+1st node must connect @ \ /

to the rest by 1 or more edges. T -
If more, we get a cycle. So it connects by just 1 more edge
3/2810% Tree:

Implementation of Trees

* One possible pointer-based Implementation
» tree nodes with value and a pointer to each child
> but how many pointers should we allocate space for?
» A more flexible pointer-based implementation
> 18t Child / Next Sibling List Representation
> Each node has 2 pointers: one to its first child and one to
next sibling
> Can handle arbitrary number of children

3/28/04 Trees

Arbitrary Branching

FirstChiIdE Sibling

3/28/04 Trees 9

Binary Trees

» Every node has at most two children
> Most popular tree in computer science

» Given N nodes, what is the minimum depth of a
binary tree? (This means all levels but the last are fulll)
> Atdepth d, you can have N = 24 to N = 241-1 nodes

2¢<N<2*'—1 implies d,;, =|log,N |

3/28/04 Trees

Minimum depth vs node count

« At depth d, you can have N = 24 to 2d+1-1
nodes

* minimum depth d is ©(log N)
T(n) = O(f(n)) means
T(n) = O(f(n)) and f(n) = O(T(n)),
i.e. T(n) and f(n) have the same
growth rate

d=2

N=22to 23-1 (i.e, 4 to 7 nodes)

3/28/04 Trees "

Maximum depth vs node
count

* What is the maximum depth of a binary
tree?
» Degenerate case: Tree is a linked list!
> Maximum depth = N-1

» Goal: Would like to keep depth at
around log N to get better performance
than linked list for operations like Find

3/28/04 Trees 12

A degenerate tree

A linked list with high overhead
and few redeeming characteristics

3/28/04 Trees 13

Traversing Binary Trees

* The definitions of the traversals are recursive
definitions. For example:
Visit the root

Visit the left subtree (i.e., visit the tree whose root
is the left child) and do this recursively

Visit the right subtree (i.e., visit the tree whose root

is the right child) and do this recursively

» Traversal definitions can be extended to
general (non-binary) trees

3/28/04 Trees 14

Traversing Binary Trees

» Preorder: Node, then Children (starting
with the left) recursively + *+ ABCD

O
* Inorder: Left child recursively, Node, /Qé @
Right child recursively A+B*C +D @

+ Postorder: Children recursively, then Node
AB+C*D+

3/28/04 Trees 15

Binary Search Trees

» Binary search trees are binary trees in
which ©)
» all values in the node’s left subtree
are less than node value e @

> all values in the node’s right subtree
are greater than node value

* Operations:
> Find, FindMin, FindMax, Insert, Delete @ @

What happens when we traverse the tree
in inorder? @

3/28/04 Trees 16

Operations on Binary Search
Trees

» How would you implement these? e

> Recursive definition of binary
search trees allows recursive routines

» Call by reference helps too Q @
* FindMin

* FindMax

» Find @
* Insert

* Delete

3/28/04 Trees 17

Binary SearchTree

data
left E right

3/28/04 Trees 18

Find

Find(T : tree pointer, x : element): tree pointer {
case {
T = null : return null;
T.data = x : return T;
T.data > x : return Find(T.left,x);
T.data < x : return Find(T.right,x)
}
}

3/28/04 Trees 19

FindMin

+ Design recursive FindMin operation that
returns the smallest element in a binary
search tree.

> FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
??7?
3/28/04 Trees 20

Insert Operation

e Insert(T: tree, X: element)

> Do a “Find” operation for X

Insert 95

@ @
@

3/28/04 Trees 22

» If X is found = update @
(no need to insert)
> Else, “Find” stops at a — 9
NULL pointer @ @
» Insert Node with X there
+ Example: Insert 95 @) ()
3/28/04 Trees 21
Insert Done with call-by-
reference
Insert(T : reference tree pointer, x : element) : integer {
if T = null then
T := new tree; T.data := x; return 1;//the links to
//children are null
case
T.data = x : return 0; .
T.data > x : return Insert(T.left, x); 1hisis where call by
T.data < x : return Insert(T.right, x); reference makes a
endcase difference.
}
Advantage of reference parameter is that the call has
the original pointer not a copy.
3/28/04 Trees 23

Call by Value vs
Call by Reference

+ Call by value
» Copy of parameter is used

])2

used inside call of F
+ Call by reference
» Actual parameter is used

3/28/04 Trees 24

Delete Operation

- Delete is a bit trickier...Why? (o)
» Suppose you want to delete 10 @ @

 Strategy:

> Find 10

> Delete the node containing 10 e @
» Problem: When you delete a node,

what do you replace it by?

3/28/04 Trees 25

Delete Operation

* Problem: When you delete a node,
what do you replace it by? @
« Solution:
> If it has no children, by NULL (10) (97)

> Ifit has 1 child, by that child

» If it has 2 children, by the node with e @
the smallest value in its right subtree
(the successor of the node)

3/28/04 Trees 26

Delete “5” - No children

® ®
© @ ®e
@@ K@ merres
NULL the

0 0 pointer to it
() ()

3/28/04 Trees 27

Find 5 node

Delete “24” - One child
Find 24 node @

> e @ Then Free

e @ g the 24 node and
replace the

pointer to it with

a pointer to its
child

3/28/04 Trees 28

Delete “10” - two children

Find 10,
Copy the smallest
value in

right subtree
into the node

Then (recursively)
e g g e @ Delete node with
smallest value

in right subtree
Note: it cannot
have two children
(why?)

3/28/04 Trees 29

Then Delete “11” - One child

Remember
11 node

e @ Then Free
the 11 node and

replace the
pointer to it with
a pointer to its
child

3/28/04 Trees 30

Remove from Text

private BinaryNode remove(Comparable x, BinaryNode t) {

if (t==null) return t; /I not found
if (x.compareTo(t.element)<0)
t.left = remove(x, t.left); /I search left
else if (x.compareTo(t.element) > 0)
t.right = remove(x, t.right); /I search right
else if (t.left != null && t.right != null) // found it; two children

{ telement = findMin (t.right).element; //find the min, replace,
t.right = remove(t.element, t.right); } and remove it

else t = (t.left = null) ? t.left : t.right; /I found it; one child
returnt; }
3/28/04 Trees 31

FindMin Solution

3/28/04

FindMin (T : tree pointer) : tree pointer {
// precondition: T is not null //

if T.left = null return T

else return FindMin(T.left)

}

Note: Look at the “remove” method in the book.

Trees

32

