
1

4/1/2005 Harbin-OO 1

OO Features of Java

Lecture 02B

4/1/2005 Harbin-OO 2

Java as an OO Language

• Java is considered an OO language
– Reminder: "Object-Oriented" design generally means

"Class-Oriented".

– Same is true in programming: "OO Programming" is
really very much class-oriented

• Java makes OO programming possible, but...
– You can also write Java programs which violate OO

principles

Just because a program is written in Java does NOT
mean it is OO!

4/1/2005 Harbin-OO 3

OO Features of Java

• We look at the most basic OO features of Java
– Much detail is omitted

• These allow us to implement classes, objects,
messages, etc.

• This should be Java you already know!
– We review it to point out the OO features and

terminology

• There are other OO and non-OO features of Java
that we will review later

4/1/2005 Harbin-OO 4

Classes in Java

• The class is the basic unit of a Java program
public class MyClass {
// methods, variables, etc.
}

• A .java file typically contains one public
class
– There can be private classes and nested or

"inner" classes, too

2

4/1/2005 Harbin-OO 5

Objects in Java

• Classes are created when the program is
designed (written)

• Objects are created when the program runs
• Objects are instances of classes
• The new operator creates an object
new MyClass(...)

• The newly created object has an internal
"name" or reference that unique identifies it

4/1/2005 Harbin-OO 6

References and Objects

• To use a new object later, save its reference

variable = new MyClass(...);

• The variable now contains a reference which
unique identifies the object

• The variable must be declared of an appropriate
type (more later), for example
MyClass variable;

• More than one variable can refer to the same
object

4/1/2005 Harbin-OO 7

Count The Objects

// Program starts, no MyClass objects yet...

variable1 = new MyClass(...);

• //now there is one MyClass object

variable2 = variable1;

• //now how many objects?

variable3 = new MyClass(...)

• //now how many objects?

4/1/2005 Harbin-OO 8

Objects and References

• Classes, objects, references, and variables
are all different things

• This is VERY IMPORTANT to understand.

• Drawing a picture will help

3

4/1/2005 Harbin-OO 9

Declaring a Variable

• Variables are declared in Java by giving a
type followed by a variable name:

Student xiaoWang;

• Such a variable can later refer to a Student
object, old or new

4/1/2005 Harbin-OO 10

Declaring vs Creating

• A variable is declared. This does not create or
change any object.

• An object is created. This does not create or
change any variable.

Student xiaoWang = new Student();
• Three separate operations take place.

– A new variable is declared. It does not yet refer to any
student

– A new Student object is created.
– Finally, the reference to the new object is assigned to

the new variable

4/1/2005 Harbin-OO 11

Messages in Java

• Messages are implemented in Java by "methods"
• The parameters of the message are the parameters

of the method

class Employee {
public void turnAround(int howMany) {

...
The message (method) is "turnAround". The

parameter name "howMany". The parameter
value is up to the sender of the message.

4/1/2005 Harbin-OO 12

Commands in Java

• Reminder: commands are messages which do not
return a value

• In Java, commands are methods with void return
type

class Employee {
public void turnAround(int howMany) {

...

"void" simply means "there is no return value"

4

4/1/2005 Harbin-OO 13

Queries in Java

• Reminder: queries are messages which return a
value

• In Java, commands are methods with any non-void
return type

class Employee {
public String getMyName() {

...
return somethingOrOther;

}
In such a method there will always be at least one

return statement with a value
4/1/2005 Harbin-OO 14

Sending a Message

• Reminder: to send a message, you must
know the name of the object.

• In Java, to send a message, you must have a
reference to the object. Then you send the
message using this syntax:

variable.methodName(parameters)

• We say that the method is "called" or
"invoked" on the object

4/1/2005 Harbin-OO 15

What's Wrong Here?

• Employee emp;

• emp.turnAround(3);

4/1/2005 Harbin-OO 16

Saving Return Values

• "A query invocation produces a value."
• This is a fancy way of saying "if you call a

method with a non-void return type, it will
return a value".

Student john;
john.getMyName();
• This is legal, but... the returned value is lost
String age = john.getMyAge(); //save the

value

5

4/1/2005 Harbin-OO 17

Object Attributes

• In Java, attributes (properties) of an object are
"instance variables"

• Each object of the class has the same instance
variables

• Each object of the class has its own values for the
instance variables

class Student {
int age;
String name;
...

4/1/2005 Harbin-OO 18

Using Instance Variables

• Instance variables are "persistent"
– Keep their values even when between messages

to the object

• An object can always see and modify its
own instance variables

• Can one object see or modify the instance
variables of another object?
– Yes, you CAN program that way in Java
– It is not considered good OO style!

4/1/2005 Harbin-OO 19

Constructors

• A constructor is a special type of method
• Invoked by the new operator when an object

is created
• The constructor "initializes" the object
• Constructor is neither a command or a

query
• A constructor can never be invoked except

when the object is created
• Examples later

4/1/2005 Harbin-OO 20

Initialization

• A most important duty of a constructor is to
initialize instance variables

• Variables can also be initialized when
declared

class Employee {
String name; //constructor should initialize

String company = "IBM"; //already initialized

...

6

4/1/2005 Harbin-OO 21

Summary

• Classes are the basic unit of Java program design

• Objects are created by new

• Classes, objects, references, and variables are all
different things

• Messages correspond to methods

• Parameters and return values of messages
correspond to those of methods

• Attributes correspond to instance variables

• Constructors create new objects

