
CSE 373 06wi 2-1

Containers, Array Lists, and Java

CSE 373
Data Structures

Winter 2006

1/6/2006 CSE 373 Wi 06- Collections & Java 2

Agenda

• Overview of containers (ADTs) and 
implementations

• First example - list implemented with 
arrays (review)

• Java best practices
› Interfaces and classes
› JavaDoc
› Iterators

1/6/2006 CSE 373 Wi 06- Collections & Java 3

Types and Implementations

• Common collection types
› List, queue, stack, set, bag (multiset), priority 

queue, map/dictionary, graph
• Variations: sorted or not (sets, maps, others)
• Implementation techniques

› Array, linked list (many variations), hashing, trees/ 
graphs (many, many variations), heaps

• Is it a collection or an implementation 
technique?  Might be either depending on 
context, e.g., trees, graphs

1/6/2006 CSE 373 Wi 06- Collections & Java 4

First Example: Lists (review)

• An ordered collection, position matters
• Operations

› Constructor: create a properly initialized 
empty list

› Modifications: clear, add/remove element 
at end or at position, change element

› Queries: size, isEmpty, get element
› Processing: iterator

1/6/2006 CSE 373 Wi 06- Collections & Java 5

Java

• CSE373 is about data structures, not 
Java, but…

• Java and the culture around it capture 
many “best practices”, so…

• We’ll learn those practices and focus on 
things that will have value in other 
settings

1/6/2006 CSE 373 Wi 06- Collections & Java 6

Collections (and other 
Abstractions) in Java

• Every interface and class defines a type
• Conventions

› Define every important type with an 
interface

› Provide implementations as appropriate
› Client code should use the interface type 

name instead of a specific implementation 
unless there is a good reason not to

• Promotes generality and reusability



CSE 373 06wi 2-2

1/6/2006 CSE 373 Wi 06- Collections & Java 7

Today’s Example

• Interfaces: BasicList, BasicListIterator
› Specifies list operations essentially the same as 

ones in Java collection classes
• Implementation: BasicArrayList

› A particular implementation using an array as the 
backing store

• Sample code on the web (and basis of hw1)

1/6/2006 CSE 373 Wi 06- Collections & Java 8

BasicArrayList Representation

• Representation is an array and count of 
number of items currently stored

private Object[ ] items;
private int nItems;

• Invariant
• References to objects in the collection are 

stored in items[0..nItems-1]
› Check invariants while coding – powerful 

bug avoidance tool

1/6/2006 CSE 373 Wi 06- Collections & Java 9

Comments

• Java comments
// to end of line
/* c-style */
/** JavaDoc */

• All comments should capture “why” that is not 
apparent from the “how” of the code

• JavaDoc – particular style of comments that 
can be automatically processed to create 
documentation

1/6/2006 CSE 373 Wi 06- Collections & Java 10

JavaDoc

• Can put almost any html between /** 
and */

• Place right before interface/class or 
method definitions (and elsewhere, but 
these are the main uses)

• Special tags to identify particular things
@author, @version – primarily for classes/ 

interfaces
@param, @return, @throws – primarily methods

1/6/2006 CSE 373 Wi 06- Collections & Java 11

Using JavaDoc

• Every class/interface should have a summary 
JavaDoc comment at the beginning

• Every public method (visible outside the 
class) should use JavaDoc to explain all
parameters, return values, exceptions that 
are part of the method contract

• Exception: JavaDoc automatically copies 
comments from interfaces to doc pages for 
implementing classes – no need to duplicate

1/6/2006 CSE 373 Wi 06- Collections & Java 12

Exceptions

• Problem: a collection (or other object) 
may be in a position to detect an error 
but not know how best to handle it

• Solution: throw an exception object that 
can be caught to handle the error or, if 
not caught, will terminate the program

throw new IndexOutOfBoundsException();



CSE 373 06wi 2-3

1/6/2006 CSE 373 Wi 06- Collections & Java 13

Exception Guidelines

• Extensive hierarchy of exception types in 
Java standard library – use one of these if 
appropriate; define your own if library ones 
don’t meet your needs

• Throw the most specific exception 
appropriate to the error, e.g., 
IllegalArgumentException(…) instead of 
Exception(…)

• Optional argument: string that provides detail
throw new IllegalArgumentException(“null not allowed…”);

1/6/2006 CSE 373 Wi 06- Collections & Java 14

Processing Collection Contents

• To process an ordered collection we 
can access the elements by position

for (int k = 0; k < size; k++)
do something with things.get(k)

• But
› This may be inefficient if access by position 

is not guaranteed to be fast
› Likely impossible (get(k) not implemented) 

for unordered collections (sets, maps)

1/6/2006 CSE 373 Wi 06- Collections & Java 15

Iterators – General Solution

• Every Java collection can provide an 
iterator that can be used to access its 
contents

Iterator it = things.iterator();
while (it.hasNext()) {

Object item = it.next();
process item

}

1/6/2006 CSE 373 Wi 06- Collections & Java 16

Standard Iterator Methods

• Forward access
hasNext() – true if more elements
next() – return next element and advance

• Similar methods for reverse access in 
some collections (e.g., lists)

• Modification
remove() – remove last item returned by 

next/previous

1/6/2006 CSE 373 Wi 06- Collections & Java 17

Iterator Details
• Multiple iterators may be active on a single 

collection at the same time
• Remove may only be used once per next/ 

previous, otherwise IllegalStateException
thrown

• Collection may not be modified while iteration 
is in progress except by remove; 
ConcurrentModificationException thrown if 
next/remove/previous attempted after other 
modification, including remove() in other 
iterator(s)


