
CSE 373 06wi 3-1

Linked Lists and Testing

CSE 373
Data Structures

Winter 2006

1/9/2006 CSE 373 Wi 06- Collections & Java 2

Agenda

• A new implementation of lists using
single-linked list data structures (review)

• Testing
› Goals
› Unit testing
› Automated testing with JUnit

1/9/2006 CSE 373 Wi 06- Collections & Java 3

Last Time

• Interfaces: BasicList, BasicListIterator
› Specifies list operations essentially the

same as ones in Java collection classes
• Implementation: BasicArrayList

› A particular implementation using an array
as the backing store

› Dynamically expanding array – appears
“infinite” to clients

1/9/2006 CSE 373 Wi 06- Collections & Java 4

Today’s Example

• Same interfaces: BasicList,
BasicListIterator

• Implementation: BasicLinkedList
› Implemented with a single-linked list as the

backing store
› Also appears “infinite” to clients

(Note: initial version is very simplistic – we’ll
improve on it over the next lecture or two)

1/9/2006 CSE 373 Wi 06- Collections & Java 5

BasicLinkedList Nodes

• Each link in the list is an instance of the
following (local) class

private class Link {
public Object item; // list element referenced

// by this link
public Link next; // next link or null if this is the last

// link in the list

// constructor for convenience
public Link(Object item, Link next) { … }

}

1/9/2006 CSE 373 Wi 06- Collections & Java 6

List Representation

• We can implement a BasicLinkedList
with (only) the following instance
variable

private Link head; // reference to first link in
// the list, or null if the
// list is empty

› (Of course, additional instance data may
make it easier to do some things faster, but
this is enough to get started.)

CSE 373 06wi 3-2

1/9/2006 CSE 373 Wi 06- Collections & Java 7

Typical List Operation
public int indexOf(Object obj) {

// sequential search
int pos = 0; // position of current link in the list
Link p = head;
while (p != null) {
if (p.item.equals(obj)) {
return pos;

}
p = p.next;
pos++;

}
return -1;

}

1/9/2006 CSE 373 Wi 06- Collections & Java 8

Another List Operation
public int size() {

// count the number of links in the list
int nItems = 0;
Link p = head;
while (p != null) {
nItems++;
p = p.next;

}
return nItems;

}
• But wait!! This takes O(n) time!!! We should be able

to do better – and we can

1/9/2006 CSE 373 Wi 06- Collections & Java 9

Speeding up size()

• Instead of counting the links, keep the list
length in a separate instance variable,
updated as needed

• A typical example of trading storage for
computation

• But how do we verify that we don’t break
anything if we make this change?
› And how do we know that things are ok to start

with?

1/9/2006 CSE 373 Wi 06- Collections & Java 10

Testing & Debugging

• Testing
› Verify that things work as expected
› Be able to reverify as software evolves

• Debugging
› Controlled experiment to discover what is

wrong and where

1/9/2006 CSE 373 Wi 06- Collections & Java 11

Testing Strategies

• Test “typical” cases – basic functional tests
› Do operations work properly on a non-empty list?

• Test “edge” cases
› Zero, one, many (empty list, single element, more,

…)
› Limit cases – what happens if a container is full
› Error cases – do things blow up as expected

(index out of bounds, other exceptions)
• Stress tests – hard, but needed in production

code – what happens under large workloads
1/9/2006 CSE 373 Wi 06- Collections & Java 12

Debugging Strategies

• Questions to ask
› What’s wrong?
› What’s working? How far do we get before

something fails?
› What are the symptoms?
› What changed since the last time it worked?

• Observing strategies
› Print statements(!)
› Debuggers – CAT scans for software
› Etc…

CSE 373 06wi 3-3

1/9/2006 CSE 373 Wi 06- Collections & Java 13

Unit Tests

• Idea: first set of tests: a collection of
tests for individual operations

• Effective testing: lots of small tests,
each of which checks something
specific
› (Avoid “big-bang” tests as your only

strategy)

1/9/2006 CSE 373 Wi 06- Collections & Java 14

Where to Put Tests

• Type them in using the programming
environment (tedious)

• Lots of test programs (better – don’t have to
retype – but still tedious to run repeatedly)

• Automated test frameworks
› Been around for a while, but popularized by

“extreme programming” / “agile development”
movements in recent years

1/9/2006 CSE 373 Wi 06- Collections & Java 15

JUnit

• Test framework for Java unit tests
• Implemented as classes that extend

Junit’s TestCase class
• Key: test methods are named testXXXX
• Optional: setUp() method to create state

before each individual test is run
• More, but these are the core ideas

1/9/2006 CSE 373 Wi 06- Collections & Java 16

Inside Test Methods

• Inherited from TestCase; typical ones include
assertEquals(expected, actual)
assertEquals(expected, actual, delta) // doubles
assertTrue(condition)
assertFalse(condition)
assertNull(object)
assertNotNull(object)
Fail(“message”) // generate failure if control

// should not reach a particular point

1/9/2006 CSE 373 Wi 06- Collections & Java 17

Unit Test Strategy

• Define tests before or as you write code
• Add and run tests each time you add

something small to the code
• Rerun tests to verify nothing broken

after changes
• If a bug is detected, create a test to

demonstrate it, fix it, then keep the test
forever as part of the test suite

