
CSE 373 06wi 4-1

Basic Complexity Theory
(Review)

CSE 373
Data Structures

Winter 2006

1/11/2006 CSE 373 Wi 06- Collections & Java 2

Agenda

• Goals: want to be able to analyze
algorithm time (in particular) and space
requirements

• Benchmarking
• Machine-independent characterizations
• Asymptotic complexity

1/11/2006 CSE 373 Wi 06- Collections & Java 3

Benchmarking

• Use stopwatch (or system clock) to time
algorithms

• Repeat for inputs of different sizes
› Graph results: time as function of input

• Maybe repeat for different algorithms
› Compare results; which algorithm is

“better”?

1/11/2006 CSE 373 Wi 06- Collections & Java 4

Benchmarking Pro

• Real numbers – often what the
customer wants to know

• Reasonable results as long as machine,
compiler, OS don’t change

• Reasonable if constraints are the same
(e.g., all data fits in main memory vs
some in main memory vs some on disk)

1/11/2006 CSE 373 Wi 06- Collections & Java 5

Benchmarking Con

• Depends on particular technology
› Can’t make meaningful statements about

results from different machines, compilers
• Too concrete – can’t answer questions

like “is quicksort better than insertion
sort” in a machine-independent way

1/11/2006 CSE 373 Wi 06- Collections & Java 6

Complexity Theory

• Idea: abstract away from particular machines,
implementations

• Measure time/space in abstract “steps” or
“cells”
› Does not depend on particular implementations

• Analyze independent of particular input
› In particular, analyze as function of large inputs –

asymptotic analysis

CSE 373 06wi 4-2

1/11/2006 CSE 373 Wi 06- Collections & Java 7

Problem Size

• Want to analyze time/space as a function of
the problem “size”
› Want this to be relatively abstract

• Typical “sizes”
› Amount of input – how much do we need to sort?
› Size of data structure – number of items, nodes,

edges
› Magnitude of parameters – effort needed to

compute n! as a function of n, for example

1/11/2006 CSE 373 Wi 06- Collections & Java 8

Execution Costs

• Basic steps
› Initialization/assignment of scalar variables (int,

double, char, boolean, pointer, reference)
› Simple arithmetic operations (+, -, *, /, %)
› Simple conditional tests (&&, ||, !)
› Array subscripting (a[k])
› Parameter passing/initialization
› Method call/return (excluding cost of executing

method body)

1/11/2006 CSE 373 Wi 06- Collections & Java 9

Execution Costs

• Sequence of statements s1; s2; … ; sn
› Sum of costs of s1, s2, …, sn

• Loops
› Loop overhead (constant) +
› Sum of costs of iterations

• Sometimes iteration cost * #iterations
• Other times need to sum up iteration costs if

they are not always the same (example:
insertion or selection sort)

1/11/2006 CSE 373 Wi 06- Collections & Java 10

Execution Costs

• if cond then s1 else s2:
› cost of cond +
› Max of cost s1, cost s2 (worst case), or
› Weighted average of cost s1, cost s2

depending on probability that cond is true
or false (expected case – harder)

• Typically we use worst-case analysis

1/11/2006 CSE 373 Wi 06- Collections & Java 11

Execution Costs

• Method calls
› Cost of evaluating arguments +
› Argument passing/parameter initialization

(usually constant, but more complex if
copying large values) +

› Call/return overhead (usually constant) +
› Cost of executing method body

1/11/2006 CSE 373 Wi 06- Collections & Java 12

Comparing Algorithms

• Use cost measures to figure out the
cost of each algorithm
› Result can be complex

• Then abstract away from noise – small
terms don’t matter

• Worry about cost as input becomes
large

CSE 373 06wi 4-3

1/11/2006 CSE 373 Wi 06- Collections & Java 13

Asymptotic Complexity

• Def: If f(n) and g(n) are two (complexity)
functions, we say that

f(n) is O(g(n) (pronounced “is order of”)
if there are constants c, n0, such that

f(n) ≤ c ⋅ g(n)
for all n ≥ n0.

1/11/2006 CSE 373 Wi 06- Collections & Java 14

Exercise

• Prove that 3n + 5n2 + 373 is O(n2)

• Prove that it is O(n4)

1/11/2006 CSE 373 Wi 06- Collections & Java 15

Significance
• This measures asymptotic complexity

› Low-order terms don’t matter
› Small values of n don’t matter

• Tight bounds are better (prefer small
functions to large, even if both are valid)

• This is a worst-case analysis
› Generally useful in practice
› Usually easier than average-case (expected-time)

analysis, but
› Sometimes want expected-time analysis (e.g.,

worst-case is pathologically worse than typical)

1/11/2006 CSE 373 Wi 06- Collections & Java 16

Complexity Classes

• Key complexity classes (know these!)
› Constant: O(1) (or O(k) for any constant k)
› Logrithmic: O(log n) (base doesn’t matter)
› Linear: O(n)
› n log n: O(n log n)
› Quadratic: O(n2)
› Cubic: O(n3)
› Polynomial: O(nk)
› Exponential: O(kn)

1/11/2006 CSE 373 Wi 06- Collections & Java 17

Graph

1/11/2006 CSE 373 Wi 06- Collections & Java 18

Comparing Algorithms

• Generally, lower asymptotic complexity is
preferable
› But constants and low-order terms may matter for

problems of practical size, so don’t do this blindly
• Algorithms of polynomial size (xn) or better

are generally feasible
• Exponential algorithms (kn) are usually not

feasible – even if computers get a lot faster

