Minimum Spanning Trees

CSE 373
Data Structures

Spanning Trees

- Given (connected) graph $G(V, E)$, a spanning tree $\mathrm{T}\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$:
, Is a subgraph of G ; that is, $\mathrm{V}^{\prime} \subseteq \mathrm{V}, \mathrm{E}^{\prime} \subseteq \mathrm{E}$.
, Spans the graph (V' = V)
, Forms a tree (no cycle);
, So, E' has |V|-1 edges

Minimum Spanning Trees

- Edges are weighted: find minimum cost spanning tree
- Applications
, Find cheapest way to wire your house
) Find minimum cost to send a message on the Internet

Strategy for Minimum Spanning Tree

- For any spanning tree T, inserting an edge $e_{\text {new }}$ not in T creates a cycle
- But
, Removing any edge $\mathrm{e}_{\text {old }}$ from the cycle gives back a spanning tree
, If $e_{\text {new }}$ has a lower cost than $e_{\text {old }}$ we have progressed!

Strategy

- Strategy for construction:
, Add an edge of minimum cost that does not create a cycle (greedy algorithm)
> Repeat |V|-1 times
, Correct since if we could replace an edge with one of lower cost, the algorithm would have picked it up

Two Algorithms

- Prim: (build tree incrementally)
, Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree
- Kruskal: (build forest that will finish as a tree)
, Pick lowest cost edge not yet in a tree that does not create a cycle. Then expand the set of included edges to include it. (It will be somewhere in the forest.)

Prim's algorithm

Prim's algorithm

Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)
$V=\{A, C\} E^{\prime}=\{(A, C)\}$

Prim's algorithm

Prim's algorithm

Repeat until all vertices have been chosen

Final Cost: $1+3+4+1+1+6=16$

Prim's Algorithm Implementation

- Assume adjacency list representation Initialize connection cost of each node to "inf" and "unmark" them Choose one node, say v and set cost[v] = 0 and prev[v] $=0$ While they are unmarked nodes

Select the unmarked node \mathbf{u} with minimum cost; mark it
For each unmarked node w adjacent to u

$$
\begin{aligned}
& \text { if } \operatorname{cost}(u, w)<\operatorname{cost}(w) \text { then } \operatorname{cost}(w):=\operatorname{cost}(u, w) \\
& \operatorname{prev}[w]=u
\end{aligned}
$$

Prim's algorithm Analysis

- If the "Select the unmarked node u with minimum cost" is done with binary heap then $\mathrm{O}((\mathrm{n}+\mathrm{m}) \operatorname{logn})$

Kruskal's Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets

Kruskal's Algorithm

Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost
Repeat until |V|-1 edges have been accepted \{
Deletemin edge from priority queue
If it forms a cycle then discard it
else accept the edge - It will join 2 existing trees yielding a larger tree and reducing the forest by one tree
\}
The accepted edges form the minimum spanning tree

Detecting Cycles

- If the edge to be added (u, v) is such that vertices u and v belong to the same tree, then by adding (u, v) you would form a cycle
, Therefore to check, Find(u) and Find(v). If they are the same discard (u, v)
, If they are different Union(Find(u),Find(v))

Properties of trees in K's algorithm

- Vertices in different trees are disjoint
, True at initialization and Union won't modify the fact for remaining trees
- Trees form equivalent classes under the relation "is connected to"
) u connected to u (reflexivity)
, u connected to v implies v connected to u (symmetry)
) u connected to v and v connected to w implies a path from u to w so u connected to w (transitivity)

K's Algorithm Data Structures

- Adjacency list for the graph
, To perform the initialization of the data structures below
- Disjoint Set ADT's for the trees (recall Up tree implementation of Union-Find)
- Binary heap for edges

Example

Initialization

Initially, Forest of 6 trees $F=\{\{A\},\{B\},\{C\},\{D\},\{E\},\{F\}\}$

Edges in a heap (not shown)

Step 1

Select edge with lowest cost (B,E)

Find $(B)=B, \operatorname{Find}(E)=E$ Union(B,E)
$F=\{\{A\},\{B, E\},\{C\},\{D\},\{F\}\}$
1 edge accepted

Step 2

Select edge with lowest cost (B,F)

Find $(B)=B, F i n d(F)=F$ Union(B,F)
$F=\{\{A\},\{B, E, F\},\{C\},\{D\}\}$
2 edges accepted

Step 3

Select edge with lowest cost (A,C)

Find $(A)=A$, Find $(C)=C$ Union(A, C)
$F=\{\{A, C\},\{B, E, F\},\{D\}\}$
3 edges accepted

Step 4

Select edge with lowest cost (E,F)

Find $(E)=B$, Find $(F)=B$ Do nothing
$F=\{\{A, C\},\{B, E, F\},\{D\}\}$
3 edges accepted

Step 5

Select edge with lowest cost (C,D)

Find $(C)=A$, Find $(D)=D$
Union(A,D)
$F=\{\{A, C, D\},\{B, E, F\}\}$
4 edges accepted

Step 6

Select edge with lowest cost (D,E)

Find $(D)=A$, Find $(E)=B$
Union(A,B)
$F=\{\{A, C, D, B, E, F\}\}$
5 edges accepted : end
Total cost $=10$
Although there is a unique spanning tree in this example, this is not generally the case

Kruskal's Algorithm Analysis

- Initialize forest $\mathrm{O}(\mathrm{n})$
- Initialize heap $O(m), m=|E|$
- Loop performed m times
, In the loop one deleteMin O(log m)
, Two Find, each O(log n)
, One Union (at most) O(1)
- So worst case $O(m \log m)=O(m \log n)$

Time Complexity Summary

- Recall that $m=|E|=O\left(V^{2}\right)=O\left(n^{2}\right)$
- Prim's runs in $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log \mathrm{n})$
- Kruskal runs in $\mathrm{O}(\mathrm{m} \log \mathrm{m})=\mathrm{O}(\mathrm{m} \log \mathrm{n})$
- In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the deleteMin operations

