
1

Priority Queues & Binary Heaps

CSE 373
Data Structures

Winter 2007

Binary Heaps 2

Readings

• Chapter 6
› Section 6.1-6.4

Binary Heaps 3

FindMin Problem
• Quickly find the smallest (or highest priority)

item in a set
• Applications:

› Operating system needs to schedule jobs
according to priority instead of FIFO

› Event simulation (bank customers arriving and
departing, ordered according to when the event
happened)

› Find student with highest grade, employee with
highest salary etc.

› Find “most important” customer waiting in line

Binary Heaps 4

Priority Queue ADT

• Priority Queue can efficiently do:
› FindMin()

• Returns minimum value but does not delete it

› DeleteMin()
• Returns minimum value and deletes it

› Insert (k)
• In GT Insert (k,x) where k is the key and x the value. In

all algorithms the important part is the key, a
“comparable” item. We’ll skip the value.

› size() and isEmpty()

Binary Heaps 5

List implementation of a Priority
Queue

• What if we use unsorted lists:
› FindMin and DeleteMin are O(n)

• In fact you have to go through the whole list
› Insert(k) is O(1)

• What if we used sorted lists
› FindMin and DeleteMin are O(1)

• Be careful if we want both Min and Max
(circular array or doubly linked list)

› Insert(k) is O(n)
Binary Heaps 6

BST implementation of a Priority
Queue

• Worst case (degenerate tree)
› FindMin, DeleteMin and Insert (k) are all O(n)

• Best case (completely balanced BST)
› FindMin, DeleteMin and Insert (k) are all O(logn)

• Balanced BSTs
› FindMin, DeleteMin and Insert (k) are all O(logn)

2

Binary Heaps 7

Better than a speeding BST

• Can we do better than Balanced Binary
Search Trees?

• Very limited requirements: Insert,
FindMin, DeleteMin. The goals are:
› FindMin is O(1)
› Insert is O(log N)
› DeleteMin is O(log N)

Binary Heaps 8

Binary Heaps
• A binary heap is a binary tree (NOT a BST) that

is:
› Complete: the tree is completely filled except

possibly the bottom level, which is filled from left to
right

› Satisfies the heap order property
• every node is less than or equal to its children
• or every node is greater than or equal to its children

• The root node is always the smallest node
› or the largest, depending on the heap order

Binary Heaps 9

Heap order property
• A heap provides limited ordering information
• Each path is sorted, but the subtrees are not

sorted relative to each other
› A binary heap is NOT a binary search tree

2

4 6

7 5

-1

0 1

0

1

2 6

8 4 7
These are all valid binary heaps (minimum)

Binary Heaps 10

Binary Heap vs Binary Search
Tree

94

10 97

5 24

5

10 94

97 24

Binary Heap Binary Search Tree

Parent is greater than left
child, less than right child

Parent is less than both
left and right children

min
value

min value

Binary Heaps 11

Structure property

• A binary heap is a complete tree
› All nodes are in use except for possibly the

right end of the bottom row

Binary Heaps 12

Examples

2

64

57

2

64

5

not complete

6

24

complete tree,
heap order is "max"

complete tree,
heap order is "min"

2

65

47

complete tree, but min
heap order is broken

3

Binary Heaps 13

Array Implementation of
Heaps

• Root node = A[1]
• Children of A[i] = A[2i], A[2i + 1]
• Keep track of current size N (number

of nodes)

N = 5

value

index

2

64

57

- 2 4 6 7 5
0 1 2 3 4 5 6 7

1

54

32

Binary Heaps 14

FindMin and DeleteMin

• FindMin: Easy!
› Return root value A[1]
› Run time = ?

• DeleteMin:
› Delete (and return) value

at root node

2

34

10857

146911

Binary Heaps 15

DeleteMin

34

10857

146911

• Delete (and return)
value at root node

Binary Heaps 16

Maintain the Structure
Property

• We now have a “Hole” at
the root
› Need to fill the hole with

another value
• When we get done, the

tree will have one less
node and must still be
complete

34

10857

146911

34

10857

146911

Binary Heaps 17

Maintain the Heap Property

• The last value has lost its
node
› we need to find a new

place for it
• We can do a simple

insertion sort - like
operation to find the
correct place for it in the
tree

34

10857

14

6911

Binary Heaps 18

DeleteMin: Percolate Down

• Keep comparing with children A[2i] and A[2i + 1]
• Copy smaller child up and go down one level
• Done if both children are ≥ item or reached a leaf node
• What is the run time?

34

10857

14

6911

4

10857

14

6911

3

84

101457

6911

3
?

?

4

Binary Heaps 19

Percolate Down
PercDown(i:integer, x :integer): {
// N is the number of entries in heap//
j : integer;
Case{

2i > N : A[i] := x; //at bottom//
2i = N : if A[2i] < x then

A[i] := A[2i]; A[2i] := x;
else A[i] := x;

2i < N : if A[2i] < A[2i+1] then j := 2i;
else j := 2i+1;
if A[j] < x then

A[i] := A[j]; PercDown(j,x);
else A[i] := x;

}}
Binary Heaps 20

DeleteMin: Run Time Analysis

• Run time is O(depth of heap)
• A heap is a complete binary tree
• Depth of a complete binary tree of N

nodes?
› depth = ⎣log2(N)⎦

• Run time of DeleteMin is O(log N)

Binary Heaps 21

Insert

• Add a value to the tree
• Structure and heap

order properties must
still be correct when we
are done

84

101457

6911

3

2

Binary Heaps 22

Maintain the Structure
Property

• The only valid place for
a new node in a
complete tree is at the
end of the array

• We need to decide on
the correct value for the
new node, and adjust
the heap accordingly

84

101457

6911

3

2

Binary Heaps 23

Maintain the Heap Property

• The new value goes where?
• We can do a simple insertion

sort operation on the path from
the new place to the root to find
the correct place for it in the tree

2

84

101457

6911

3

Binary Heaps 24

Insert: Percolate Up

2

84

101457

6911

3

• Start at last node and keep comparing with parent A[i/2]
• If parent larger, copy parent down and go up one level
• Done if parent ≤ item or reached top node A[1]
• Run time?

?

2
5

84

10147

6911

3

?

2

5

8

101447

6911

3?

5

Binary Heaps 25

Insert: Done

5

83

101447

6911

2

• Run time?

Binary Heaps 26

PercUp

PercUp(i : integer, x : integer): {
if i = 1 then A[1] := x
else if A[i/2] < x then

A[i] := x;
else

A[i] := A[i/2];
Percup(i/2,x);

}

Binary Heaps 27

Sentinel Values
• Every iteration of Insert needs to test:

› if it has reached the top node A[1]
› if parent ≤ item

• Can avoid first test if A[0] contains a very
large negative value
› sentinel -∞ < item, for all items

• Second test alone always stops at top

-∞

5

83

91047

6911

2

value

index

-∞ 2 3 8 7 4 10 9
0 1 2 3 4 5 6 7

11 9 6 5
8 9 10 11 12 13

Binary Heaps 28

Binary Heap Analysis
• Space needed for heap of N nodes: O(MaxN)

› An array of size MaxN, plus a variable to store the
size N, plus an array slot to hold the sentinel

• Time
› FindMin: O(1)
› DeleteMin and Insert: O(log N)
› BuildHeap from N inputs : O(N) (forthcoming)

