
1

Heap Sort

CSE 373
Data Structures

Winter 2007

Heap sort 2

Heap Sort

• Recall Selection Sort:
While !S.isEmpty(){
k := S.DeleteMin();
T.addlast(k); // An easy

simplification of Insert(k)

• Let S be a heap and T be the target
› O(n log n) since DeleteMin is O(log n)
› But how do we build a heap?

Robert Floyd 1937-2002

Heap sort 3

Build Heap

BuildHeap {
for i = N/2 to 1 by –1 PercDown(i,A[i])

}

3

105

12849

672

11N=11

4

105

12839

672

11
1

4

32

5 6 7

11
109

8

Heap sort 4

Build Heap

4

105

9832

679

11

4

85

121032

679

11

Heap sort 5

Build Heap

4

82

121035

679

11

11

83

121045

679

2

Heap sort 6

Analysis of Build Heap

• Each node can percolate down at most its own
height

• Let N = 2k+1 –1 (height of complete heap is k)
• Then sum of heights is

)1()1(12)(2 1

0

+−=+−−=− +

=
∑ kNkik ki
k

i

2

Heap sort 7

Other Heap Operations

• Find(X, H): Find the element X in heap H of N
elements
› What is the running time? O(N)

• FindMax(H): Find the maximum element in H
where FindMin is O(1)
› What is the running time? O(N)

• We sacrificed performance of these operations
in order to get O(1) performance for FindMin

Heap sort 8

Other Heap Operations

• DecreaseKey(P,∆,H): Decrease the key
value of node at position P by a positive
amount ∆, e.g., to increase priority
› First, subtract ∆ from current value at P
› Heap order property may be violated
› so percolate up to fix
› Running Time: O(log N)

Heap sort 9

Other Heap Operations

• IncreaseKey(P,∆,H): Increase the key
value of node at position P by a positive
amount ∆, e.g., to decrease priority
› First, add ∆ to current value at P
› Heap order property may be violated
› so percolate down to fix
› Running Time: O(log N)

Heap sort 10

Other Heap Operations
• Delete(P,H): E.g. Delete a job waiting in

queue that has been preemptively
terminated by user
› Use DecreaseKey(P,∞,H) followed by

DeleteMin
› Running Time: O(log N)

Heap sort 11

Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and
H2 of size O(N). H1 and H2 are stored in
two arrays.
› Can do O(N) Insert operations: O(N log N)

time
› Better: Copy H2 at the end of H1 and use

BuildHeap. Running Time: O(N)

