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Heap Sort

• Recall Selection Sort:
While !S.isEmpty(){
k := S.DeleteMin();
T.addlast(k); // An easy 

simplification of Insert(k)

• Let S be a heap and T be the target
› O(n log n) since DeleteMin is O(log n)
› But how do we build a heap?

Robert Floyd 1937-2002
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Build Heap

BuildHeap {
for i = N/2 to 1 by –1 PercDown(i,A[i])

}
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Build Heap
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Build Heap
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Analysis of Build Heap

• Each node can percolate down at most its own 
height

• Let N = 2k+1 –1 (height of complete heap is k)
• Then sum of heights is 
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Other Heap Operations

• Find(X, H): Find the element X in heap H of N 
elements
› What is the running time? O(N)

• FindMax(H): Find the maximum element in H 
where FindMin is O(1)
› What is the running time? O(N)

• We sacrificed performance of these operations 
in order to get O(1) performance for FindMin
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Other Heap Operations

• DecreaseKey(P,∆,H): Decrease the key 
value of node at position P by a positive 
amount ∆, e.g., to increase priority
› First, subtract ∆ from current value at P
› Heap order property may be violated
› so percolate up to fix
› Running Time: O(log N)
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Other Heap Operations

• IncreaseKey(P,∆,H): Increase the key 
value of node at position P by a positive 
amount ∆, e.g., to decrease priority
› First, add ∆ to current value at P
› Heap order property may be violated
› so percolate down to fix
› Running Time: O(log N)
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Other Heap Operations
• Delete(P,H): E.g. Delete a job waiting in 

queue that has been preemptively 
terminated by user
› Use DecreaseKey(P,∞,H) followed by 

DeleteMin
› Running Time: O(log N)
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Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and 
H2 of size O(N). H1 and H2 are stored in 
two arrays. 
› Can do O(N) Insert operations: O(N log N) 

time
› Better: Copy H2 at the end of H1 and use 

BuildHeap.  Running Time: O(N)


