

Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems...

Related Problems: Puzzles

1) Can you draw these without lifting your pen, drawing each line only once
2) Can you start and end at the same point.

Sparsely Connected Graph

- n vertices
- n edges total
- Ring

Densely Connected Graph

- n vertices total
- ($\mathrm{n}(\mathrm{n}-1)) / 2$ edges total (w/o self loops)

In Between (Hypercube)

- n vertices
- $\log \mathrm{n}$ edges between two vertices
- $1 / 2 \mathrm{n}$ log n edges total

Colorings

Four Color Conjecture

- is it true that any map can be colored using four colors in such a way that adjacent regions (i.e. those sharing a common boundary segment, not just a point) receive different colors (1852)?
- Many attempts at proof
- Finally "solved" by computer program (1974) , Still extremely complex....
"We should mention that both our programs use only integer arithmetic, and so we need not be concerned with round-off errors and similar dangers of floating point arithmetic. However, an argument can be made that our 'proof' is not a proof in the traditional sense, because it contains steps that can never be verified by humans. In particular, we have not proved the correctness of the compiler we compiled our programs on, nor have we proved the infallibility of the hardware we ran our programs on. These have to be taken on faith, and are conceivably a source of error. However, from a practical point of view, the chance of a computer error that appears consistently in exactly the same way on all runs of our programs on all the compilers under all the operating systems that our programs run on is infinitesimally small compared to the chance of a human error during the same amount of case-checking. Apart from this hypothetical possibility of a computer consistently giving an incorrect answer, the rest of our proof can be verified in the same way as traditional mathematical proofs. We concede, however, that verifying a computer program is much more difficult than checking a mathematical proof of the same length."

Graph Example

- Here is a graph $G=(V, E)$
, Each edge is a pair $\left(v_{1}, v_{2}\right)$, where v_{1}, v_{2} are vertices in V
, $V=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$
$E=\{(A, B),(A, D),(B, C),(C, D),(C, E),(D, E)\}$

29

Graph Definition

- A graph is a collection of nodes plus edges
, Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
, V is a set of vertices or nodes
> E is a set of edges that connect vertices

Directed vs Undirected Graphs

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ matters, the graph is directed (also called a digraph): $\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)$

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ does not matter, the graph is called an undirected graph: in this case, (v_{1}, $\left.v_{2}\right)=\left(v_{2}, v_{1}\right)$

Graph Terminology

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u, v\}$ is an edge in G , edge $e=\{u, v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
, a self-loop counts twice (both ends count)
, denoted with $\operatorname{deg}(v)$

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u, v) is an edge in G
, vertex u is the initial vertex of (u, v)
- Vertex v is adjacent from vertex u
, vertex v is the terminal (or end) vertex of (u, v)
- Degree
, in-degree is the number of edges with the vertex as the terminal vertex
, out-degree is the number of edges with the vertex as the initial vertex

Handshaking Theorem

Handshaking Theorem II

- For a directed graph:

$$
\sum_{v i n G} \operatorname{ind}(v)=\sum_{v i n g} o u t d(v)=e
$$

- Every edge contributes +1 to the degree of each of the two vertices it is incident with
, number of edges is exactly half the sum of deg(v)
, the sum of the deg(v) values must be even

Graph ADT

- Nothing unexpected

> Build the graph (vertices, edges)
> Return the edges incident in(or out) of a vertex)
, Find if two vertices are adjacent etc..
, Replace ..., Insert...Remove ..

- What is interesting
> How to represent graphs in memory
, What representation to use for what algorithms

Graph Representations

- Space and time are analyzed in terms of:
- Number of vertices $=|V|$ and
- Number of edges = |E|
- There are at least two ways of representing graphs:
- The adjacency matrix representation
- The adjacency list representation

Adjacency List

For each v in $V, L(v)=$ list of w such that (v, w) is in E

(F)

Graph Terminology

Adjacency List for a Digraph

For each v in $V, L(v)=$ list of w such that (v, w) is in E

(F)

