

Topological Sort

Given a digraph $G=(V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

Only acyclic graphs can be topologically sorted

- A directed graph with a cycle cannot be topologically sorted.

(F)

Paths and Cycles

- Given a digraph $G=(V, E)$, a path is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that:
> $\left(v_{i}, v_{i+1}\right)$ in E for $1 \leq i<k$
> path length = number of edges in the path > path cost = sum of costs of each edge
- A path is a cycle if :
$>k>1 ; v_{1}=v_{k}$
- G is acyclic if it has no cycles.

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges

- Select one such vertex

Digraphs
11

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges - If no such vertices, graph has only cycle(s) (cyclic graph)

- Topological sort not possible - Halt.

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Digraphs

Calculate In-degrees

```
for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
    x := A[i];
        while x\not= null do
        while x\not= null do 
            x := x.next;
        endwhile
endfor
```

Calculate In-degrees

Topological Sort Algorithm

1. Store each vertex's In-Degree in an array D
2. Initialize queue with all "in-degree=0" vertices
3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1
(c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Main Loop
Main Loop
while notEmpty (Q) do
while notEmpty (Q) do
$x:=$ Dequeue (Q)
$x:=$ Dequeue (Q)
Output (x)
Output (x)
$y:=A[x]$;
$y:=A[x]$;
while $y \neq$ null do
while $y \neq$ null do
$D[y . v a l u e]:=D[y . v a l u e]-1 ;$
$D[y . v a l u e]:=D[y . v a l u e]-1 ;$
if $D[y . v a l u e]=0$ then Enqueue($Q, y . v a l u e)$;
if $D[y . v a l u e]=0$ then Enqueue($Q, y . v a l u e)$;
$y:=y . n e x t ;$
$y:=y . n e x t ;$
endwhile
endwhile
endwhile
endwhile

Topological Sort Analysis

- Initialize In-Degree array: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Initialize Queue with In-Degree 0 vertices: $\mathrm{O}(|\mathrm{V}|)$
- Dequeue and output vertex:
, $|V|$ vertices, each takes only $\mathrm{O}(1)$ to dequeue and output: $\mathrm{O}(|\mathrm{V}|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
, $\mathrm{O}(|\mathrm{E}|)$
- For input graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ run time $=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
, Linear time!

