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Shortest Paths

CSE 373
Data Structures

Winter 2007
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Readings

• Reading Chapter 9
› Section 9.3
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Recall Path cost ,Path length
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost
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Shortest Path Problems
• Given a graph G = (V, E) and a “source” vertex s

in V, find the minimum cost paths from s to every 
vertex in V

• Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights 
› etc
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Why study shortest path 
problems?

• Traveling on a budget: What is the cheapest 
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
› Vertices are routers and edges are network links with 

different delays.  What is the routing path with 
smallest total delay?

• Shipping: Find which highways and roads to 
take to minimize total delay due to traffic

• etc.
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Unweighted Shortest Path
Problem: Given a “source” vertex s in an unweighted

directed graph 
G = (V,E), find the shortest path from s to all vertices 

in G
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Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices 
that can be reached using 0, 1, 2, 3, …, N-1 
edges  (works even for cyclic graphs!)
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Breadth-First Search Alg.
• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once 

// it won’t be enqueued again
while queue is not empty do

X := Dequeue(Q);
for each vertex Y adjacent to X do

if Y is unmarked then
Distance[Y] := Distance[X] + 1;
Previous[Y] := X;//if we want to record paths
Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)
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Example: Shortest Path length
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Example (ct’d)
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Example (ct’d)
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Example (ct’d)
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Example (ct’d)
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Example (ct’d)
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What if edges have weights?

• Breadth First Search does not work anymore 
› minimum cost path may have more edges than 

minimum length path
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Shortest path (length)
from C to A:
C A (cost = 9)

Minimum Cost 
Path = C E D A
(cost = 8)
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Dijkstra’s Algorithm for 
Weighted Shortest Path

• Classic algorithm for solving shortest 
path in weighted graphs (without 
negative weights)

• A greedy algorithm (irrevocably makes 
decisions without considering future 
consequences)

• Each vertex has a cost for path from 
initial vertex
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Dijkstra’s Algorithm

• Edsger Dijkstra
(1930-2002)
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Basic Idea of Dijkstra’s
Algorithm (1959) 

• Find the vertex with smallest cost that has not 
been “marked” yet.

• Mark it and compute the cost of its neighbors.
• Do this until all vertices are marked.
• Note that each step of the algorithm we are 

marking one vertex and we won’t change our 
decision: hence the term “greedy” algorithm

• Works for directed and undirected graphs
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Dijkstra’s Shortest Path 
Algorithm

• Initialize the cost of s to 0, and all the rest of the 
nodes to ∞

• Initialize set S to be ∅
› S is the set of nodes to which we have a shortest path

• While S is not all vertices
› Select the node A with the lowest cost that is not in S 

and identify the node as now being in S
› for each node B adjacent to A

• if cost(A)+cost(A,B) < B’s currently known cost
– set cost(B) = cost(A)+cost(A,B)
– set  previous(B) = A so that we can remember the path
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Example: Initialization
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Example: Update Cost 
neighbors
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Example: pick vertex with 
lowest cost and add it to S

Pick vertex not in S with lowest cost, i.e., v4
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Example: update neighbors
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Cost(v3) = 1 + 2 = 3 
Cost(v5) = 1 + 2 = 3 
Cost(v6) = 1 + 8 = 9 
Cost(v7) = 1 + 4 = 5
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Example (Ct’d)
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Note : cost(v4) not 
updated since already 
in S and cost(v5) not 
updated since it is 
larger than previously 
computed
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Example: (ct’d)
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Example: (ct’d)
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Example: (ct’d)
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Pick vertex not in S with lowest cost (v7) and update neighbors

Cost(v6) = min (8, 5+1) = 6

Previous cost
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Example (end)
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Data Structures
• Adjacency Lists
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Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

P Q

previous cost priority queue pointers
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Priority Queue
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Priority Queue
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Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 ∞
1

∞ ∞

2

3 7

5 6

0
2
3
1
∞
∞
∞

C

1
2

4
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1
4
1

percolate up

Shortest paths 33

Time Complexity

• n vertices and m edges
• Initialize data structures O(n+m)
• Find min cost vertices O(n log n)

› n delete mins
• Update costs O(m log n)

› Potentially m updates
• Update previous pointers O(m)

› Potentially m updates
• Total time O((n + m) log n) - very fast.
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Correctness

• Dijkstra’s algorithm is an example of a greedy 
algorithm

• Greedy algorithms always make choices that 
currently seem the best
› Short-sighted – no consideration of long-term or global 

issues
› Locally optimal does not always mean globally optimal

• In Dijkstra’s case – choose the least cost node, 
but what if there is another path through other 
vertices that is cheaper?
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THE KNOWN
CLOUD

G Next shortest path from 
inside the known cloud

P

“Cloudy” Proof

• If the path to G is the next shortest path, the path to P must be 
at least as long. Therefore, any path through P to G cannot be 
shorter!

Source

Least cost node
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Inside the Cloud (Proof)

• Everything inside the cloud has the correct 
shortest path

• Proof is by induction on the number of nodes 
in the cloud:
› Base case: Initial cloud is just the source with 

shortest path 0
› Inductive hypothesis: cloud of k-1 nodes all have 

shortest paths
› Inductive step: choose the least cost node G 

has to be the shortest path to G (previous slide). 
Add k-th node G to the cloud


