
1

Shortest Paths

CSE 373
Data Structures

Winter 2007

Shortest paths 2

Readings

• Reading Chapter 9
› Section 9.3

Shortest paths 3

Recall Path cost ,Path length
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

4

2 2

2
3

2 2
3

length(p) = 5
cost(p) = 11

Shortest paths 4

Shortest Path Problems
• Given a graph G = (V, E) and a “source” vertex s

in V, find the minimum cost paths from s to every
vertex in V

• Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights
› etc

Shortest paths 5

Why study shortest path
problems?

• Traveling on a budget: What is the cheapest
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
› Vertices are routers and edges are network links with

different delays. What is the routing path with
smallest total delay?

• Shipping: Find which highways and roads to
take to minimize total delay due to traffic

• etc.
Shortest paths 6

Unweighted Shortest Path
Problem: Given a “source” vertex s in an unweighted

directed graph
G = (V,E), find the shortest path from s to all vertices

in G

A

C

B

D

F H

G

E

Source

Only interested

in path lengths

2

Shortest paths 7

Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, …, N-1
edges (works even for cyclic graphs!)

A

C

B

D

F H

G

E

Shortest paths 8

Breadth-First Search Alg.
• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0
Enqueue(Q,s); Mark(s)//After a vertex is marked once

// it won’t be enqueued again
while queue is not empty do

X := Dequeue(Q);
for each vertex Y adjacent to X do

if Y is unmarked then
Distance[Y] := Distance[X] + 1;
Previous[Y] := X;//if we want to record paths
Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)

Shortest paths 9

Example: Shortest Path length

A

C

B

D

F H

G

E

0

Queue Q = C

Shortest paths 10

Example (ct’d)

A

C

B

D

F H

G

E

0

Queue Q = A D E

1

1

1

Previous
pointer

Indicates the vertex is marked

Shortest paths 11

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = D E B

1

1

1

2

Shortest paths 12

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = B G

1

1

1

2

2

3

Shortest paths 13

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = F

1

1

1

2

2

3 4

Shortest paths 14

Example (ct’d)

A

C

B

D

F H

G

E

0

Q = H

1

1

1

2

2

3

Shortest paths 15

What if edges have weights?

• Breadth First Search does not work anymore
› minimum cost path may have more edges than

minimum length path

A

C

B

D

F H

G

E

2 3

2 1

1

4
2

11

93

8

3

Shortest path (length)
from C to A:
C A (cost = 9)

Minimum Cost
Path = C E D A
(cost = 8)

Shortest paths 16

Dijkstra’s Algorithm for
Weighted Shortest Path

• Classic algorithm for solving shortest
path in weighted graphs (without
negative weights)

• A greedy algorithm (irrevocably makes
decisions without considering future
consequences)

• Each vertex has a cost for path from
initial vertex

Shortest paths 17

Dijkstra’s Algorithm

• Edsger Dijkstra
(1930-2002)

Shortest paths 18

Basic Idea of Dijkstra’s
Algorithm (1959)

• Find the vertex with smallest cost that has not
been “marked” yet.

• Mark it and compute the cost of its neighbors.
• Do this until all vertices are marked.
• Note that each step of the algorithm we are

marking one vertex and we won’t change our
decision: hence the term “greedy” algorithm

• Works for directed and undirected graphs

4

Shortest paths 19

Dijkstra’s Shortest Path
Algorithm

• Initialize the cost of s to 0, and all the rest of the
nodes to ∞

• Initialize set S to be ∅
› S is the set of nodes to which we have a shortest path

• While S is not all vertices
› Select the node A with the lowest cost that is not in S

and identify the node as now being in S
› for each node B adjacent to A

• if cost(A)+cost(A,B) < B’s currently known cost
– set cost(B) = cost(A)+cost(A,B)
– set previous(B) = A so that we can remember the path

Shortest paths 20

Example: Initialization

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

Pick vertex not in S with lowest cost.

∞ ∞

Cost(source) = 0 Cost(all vertices
but source) = ∞

Shortest paths 21

Example: Update Cost
neighbors

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Cost(v2) = 2
Cost(v4) = 1

Shortest paths 22

Example: pick vertex with
lowest cost and add it to S

Pick vertex not in S with lowest cost, i.e., v4

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Shortest paths 23

Example: update neighbors

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Cost(v3) = 1 + 2 = 3
Cost(v5) = 1 + 2 = 3
Cost(v6) = 1 + 8 = 9
Cost(v7) = 1 + 4 = 5

Shortest paths 24

Example (Ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v2) and update neighbors

9 5

Note : cost(v4) not
updated since already
in S and cost(v5) not
updated since it is
larger than previously
computed

5

Shortest paths 25

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S (v5) with lowest cost and update neighbors

9 5
No updating

Shortest paths 26

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v7) and update neighbors

8 5

Shortest paths 27

Example: (ct’d)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

Pick vertex not in S with lowest cost (v7) and update neighbors

Cost(v6) = min (8, 5+1) = 6

Previous cost

Shortest paths 28

Example (end)

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (v6) and update neighbors

6 5

Shortest paths 29

Data Structures
• Adjacency Lists

1
2
3
4
5
6
7

2 2
G

0
∞
∞
∞
∞
∞
∞

C
4 1

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

4 3 5 10
1 4 6 5
3 2 5 2
7 6

6 1

6 8

7 4

next
cost

adj

Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

P Q

previous cost priority queue pointers

Shortest paths 30

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

∞ ∞
1

∞ ∞

2

5 7

3 6

0
2
∞
1
∞
∞
∞

C

1
4

2
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1

1

Before the update, but
after find min.,i.e., v1 and v4
have been “deletemin”

This is somewhat arbitrary
and depends when the
heap was first built

6

Shortest paths 31

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 ∞
1

∞ ∞

2

5 7

3 6

0
2
3
1
∞
∞
∞

C

1
4

2
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1
4
1

update node 3
decrease
cost

Shortest paths 32

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 ∞
1

∞ ∞

2

3 7

5 6

0
2
3
1
∞
∞
∞

C

1
2

4
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1
4
1

percolate up

Shortest paths 33

Time Complexity

• n vertices and m edges
• Initialize data structures O(n+m)
• Find min cost vertices O(n log n)

› n delete mins
• Update costs O(m log n)

› Potentially m updates
• Update previous pointers O(m)

› Potentially m updates
• Total time O((n + m) log n) - very fast.

Shortest paths 34

Correctness

• Dijkstra’s algorithm is an example of a greedy
algorithm

• Greedy algorithms always make choices that
currently seem the best
› Short-sighted – no consideration of long-term or global

issues
› Locally optimal does not always mean globally optimal

• In Dijkstra’s case – choose the least cost node,
but what if there is another path through other
vertices that is cheaper?

Shortest paths 35

THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

“Cloudy” Proof

• If the path to G is the next shortest path, the path to P must be
at least as long. Therefore, any path through P to G cannot be
shorter!

Source

Least cost node

Shortest paths 36

Inside the Cloud (Proof)

• Everything inside the cloud has the correct
shortest path

• Proof is by induction on the number of nodes
in the cloud:
› Base case: Initial cloud is just the source with

shortest path 0
› Inductive hypothesis: cloud of k-1 nodes all have

shortest paths
› Inductive step: choose the least cost node G

has to be the shortest path to G (previous slide).
Add k-th node G to the cloud

