

Readings

- Reading Chapter 9
, Section 9.3

Recall Path cost ,Path length

- Path cost: the sum of the costs of each edge
- Path length: the number of edges in the path
, Path length is the unweighted path cost

Why study shortest path problems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
, Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic
- etc.

Shortest Path Problems

- Given a graph $G=(V, E)$ and a "source" vertex s in V, find the minimum cost paths from s to every vertex in V
- Many variations:
, unweighted vs. weighted
cyclic vs. acyclic
pos. weights only vs. pos. and neg. weights
, etc

Breadth-First Search Solution

- Basic Idea: Starting at node s, find vertices that can be reached using $0,1,2,3, \ldots, N-1$ edges (works even for cyclic graphs!)

What if edges have weights?

- Breadth First Search does not work anymore
, minimum cost path may have more edges than minimum length path

Shortest path (length)
from C to A :
$C \rightarrow A(\cos t=9)$
Minimum Cost Path $=\mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$ (cost =8)

Example (ct'd)

$\mathrm{Q}=\mathrm{H}$

Dijkstra's Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex

Dijkstra's Algorithm

- Edsger Dijkstra (1930-2002)

Basic Idea of Dijkstra's Algorithm (1959)

- Find the vertex with smallest cost that has not been "marked" yet.
- Mark it and compute the cost of its neighbors.
- Do this until all vertices are marked.
- Note that each step of the algorithm we are marking one vertex and we won't change our decision: hence the term "greedy" algorithm
- Works for directed and undirected graphs

Dijkstra's Shortest Path

 Algorithm- Initialize the cost of s to 0 , and all the rest of the nodes to ∞
- Initialize set S to be \varnothing
, S is the set of nodes to which we have a shortest path
- While S is not all vertices
, Select the node A with the lowest cost that is not in S and identify the node as now being in S
, for each node B adjacent to A
- if $\operatorname{cost}(\mathrm{A})+\operatorname{cost}(\mathrm{A}, \mathrm{B})<\mathrm{B}$'s currently known cost
$-\operatorname{set} \operatorname{cost}(\mathrm{B})=\operatorname{cost}(\mathrm{A})+\operatorname{cost}(\mathrm{A}, \mathrm{B})$
- set previous $(B)=A$ so that we can remember the path

Example: Initialization

Pick vertex not in S with lowest cost.

Example: pick vertex with lowest cost and add it to S
Example: Update Cost neighbors \qquad

Pick vertex not in S with lowest cost, i.e., v_{4}

Time Complexity

- n vertices and m edges
- Initialize data structures $O(n+m)$
- Find min cost vertices $O(n \log n)$
, n delete mins
- Update costs $\mathrm{O}(\mathrm{m} \log \mathrm{n})$
, Potentially m updates
- Update previous pointers $O(m)$
, Potentially m updates
- Total time $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log \mathrm{n})$ - very fast.

Priority Queue

Correctness

- Dijkstra's algorithm is an example of a greedy algorithm
- Greedy algorithms always make choices that currently seem the best
, Short-sighted - no consideration of long-term or global issues
, Locally optimal does not always mean globally optimal
- In Dijkstra's case - choose the least cost node, but what if there is another path through other vertices that is cheaper?

Inside the Cloud (Proof)

- Everything inside the cloud has the correct shortest path
- Proof is by induction on the number of nodes in the cloud:
> Base case: Initial cloud is just the source with shortest path 0
, Inductive hypothesis: cloud of $\mathrm{k}-1$ nodes all have shortest paths
> Inductive step: choose the least cost node G \rightarrow has to be the shortest path to G (previous slide). Add k-th node G to the cloud

