

Reading

- Chapter 9
, Section 9.5

Minimum Spanning Tree

- Edges are weighted: find minimum cost spanning tree
- Applications
, Find cheapest way to wire your house
, Find minimum cost to send a message on the Internet

Two Algorithms

- Prim: (build tree incrementally)
, Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree
- Kruskal: (build forest that will finish as a tree)
, Pick lower cost edge not yet in a tree that does not create a cycle and expand to include it somewhere in the forest

Prim's algorithm

Prim's Algorithm Implementation

- Assume adjacency list representation

Initialize connection cost of each node to "inf" and "unmark" them
Choose one node, say v and set cost[v] = 0 and prev[v] =0
While they are unmarked nodes
Select the unmarked node u with minimum cost; mark it
For each unmarked node w adjacent to u if $\operatorname{cost}(u, w)<\operatorname{cost}(w)$ then $\operatorname{cost}(w):=\operatorname{cost}(u, w)$ $\operatorname{prev}[w]=u$

- Looks a lot like Dijkstra's algorithm!

Prim's algorithm Analysis

- Like Dijkstra's algorithm
- If the "Select the unmarked node u with minimum cost" is done with binary heap then $\mathrm{O}((\mathrm{n}+\mathrm{m}) \operatorname{logn})$

Kruskal's Algorithm

Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost Repeat until |V|-1 edges have been accepted \{

Deletemin edge from priority queue
If it forms a cycle then discard it
else accept the edge - It will join 2 existing trees yielding a larger tree and reducing the forest by one tree
\}
The accepted edges form the minimum spanning tree

Properties of trees in K's

 algorithm- Vertices in different trees are disjoint
, True at initialization and Union won't modify the fact for remaining trees
- Trees form equivalent classes under the relation "is connected to"
> u connected to u (reflexivity)
> u connected to v implies v connected to u (symmetry)
> u connected to v and v connected to w implies a path from u to w so u connected to w (transitivity)

Kruskal's Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets

Detecting Cycles

- If the edge to be added (u, v) is such that vertices u and v belong to the same tree, then by adding (u,v) you would form a cycle
, Therefore to check, Find(u) and Find(v). If they are the same discard (u, v)
, If they are different Union(Find(u),Find(v))

K's Algorithm Data Structures

- Adjacency list for the graph
, To perform the initialization of the data structures below
- Disjoint Set ADT's for the trees (recall Up tree implementation of Union-Find)
- Binary heap for edges

Kruskal's Algorithm Analysis

- Initialize forest $O(n)$
- Initialize heap $O(m), m=|E|$
- Loop performed m times
, In the loop one Deletemin O(logm)
, Two Find, each O(logn)
> One Union (at most) O(1)
- So worst case $O(m \operatorname{logm})=O(m \log n)$
\qquad

Time Complexity Summary

- Recall that $m=|E|=O\left(V^{2}\right)=O\left(n^{2}\right)$
- Prim's runs in $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log \mathrm{n})$
- Kruskal's runs in O (mlogm) $=O$ (mlogn)
- In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the Deletemin operations

