
1

Minimum Spanning Trees

CSE 373
Data Structures

Winter 2007

MSTs 2

Reading

• Chapter 9
› Section 9.5

MSTs 3

Spanning Tree

• Given (connected) G(V,E) a spanning
tree T(V’,E’):
› Spans the graph (V’ = V)
› Forms a tree (no cycles); E’ has |V| -1

edges

MSTs 4

Minimum Spanning Tree

• Edges are weighted: find minimum cost
spanning tree

• Applications
› Find cheapest way to wire your house
› Find minimum cost to send a message on

the Internet

MSTs 5

Basic Strategy

• Strategy:
› Add an edge of minimum cost that does

not create a cycle (greedy algorithm)
› Repeat |V| -1 times
› Correct since if we could replace an edge

with one of lower cost, the algorithm would
have picked it up

MSTs 6

Two Algorithms

• Prim: (build tree incrementally)
› Pick lower cost edge connected to known

(incomplete) spanning tree that does not create a
cycle and expand to include it in the tree

• Kruskal: (build forest that will finish as a tree)
› Pick lower cost edge not yet in a tree that does not

create a cycle and expand to include it
somewhere in the forest

2

MSTs 7

Prim and Kruskal et al.

Robert Prim (1921-) Joseph Kruskal (1929-

Rediscover algorithms (1957) (1965)

Based on Otakar Boruvka (1899-1995)
MST (1926) to cover electrical network in
Bohemia)

Published in Czech in 1934 by
Jarnik (1897-1970)

MSTs 8

Prim’s algorithm
1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Starting from empty T,
choose a vertex at
random and initialize

V = {1}, E’ ={}

MSTs 9

Prim’s algorithm
1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Choose the vertex u not in
V such that edge weight
from u to a vertex in V is
minimal (greedy!)

V={1,3} E’= {(1,3)}

MSTs 10

Prim’s algorithm
1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Repeat until all vertices have
been chosen

Choose the vertex u not in V
such that edge weight from v to a
vertex in V is minimal (greedy!)

V= {1,3,4} E’= {(1,3),(3,4)}

V={1,3,4,5} E’={(1,3),(3,4),(4,5)}

….

V={1,3,4,5,2,6}

E’={(1,3),(3,4),(4,5),(5,2),(2,6)}

MSTs 11

Prim’s algorithm
1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Repeat until all vertices have
been chosen

V={1,3,4,5,2,6}

E’={(1,3),(3,4),(4,5),(5,2),(2,6)}

Final Cost: 1 + 3 + 4 + 1 + 1 = 10

MSTs 12

Prim’s Algorithm
Implementation

• Assume adjacency list representation
Initialize connection cost of each node to “inf” and “unmark” them
Choose one node, say v and set cost[v] = 0 and prev[v] =0
While they are unmarked nodes

Select the unmarked node u with minimum cost; mark it
For each unmarked node w adjacent to u

if cost(u,w) < cost(w) then cost(w) := cost (u,w)
prev[w] = u

• Looks a lot like Dijkstra’s algorithm!

3

MSTs 13

Prim’s algorithm Analysis

• Like Dijkstra’s algorithm
• If the “Select the unmarked node u with

minimum cost” is done with binary heap
then O((n+m)logn)

MSTs 14

Kruskal’s Algorithm

• Select edges in order of increasing cost
• Accept an edge to expand tree or forest

only if it does not cause a cycle
• Implementation using adjacency list,

priority queues and disjoint sets

MSTs 15

Kruskal’s Algorithm
Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost
Repeat until |V| -1 edges have been accepted {

Deletemin edge from priority queue
If it forms a cycle then discard it
else accept the edge – It will join 2 existing trees yielding a larger tree

and reducing the forest by one tree
}
The accepted edges form the minimum spanning tree

MSTs 16

Detecting Cycles

• If the edge to be added (u,v) is such
that vertices u and v belong to the same
tree, then by adding (u,v) you would
form a cycle
› Therefore to check, Find(u) and Find(v). If

they are the same discard (u,v)
› If they are different Union(Find(u),Find(v))

MSTs 17

Properties of trees in K’s
algorithm

• Vertices in different trees are disjoint
› True at initialization and Union won’t modify the

fact for remaining trees
• Trees form equivalent classes under the

relation “is connected to”
› u connected to u (reflexivity)
› u connected to v implies v connected to u

(symmetry)
› u connected to v and v connected to w implies a

path from u to w so u connected to w (transitivity)

MSTs 18

K’s Algorithm Data Structures

• Adjacency list for the graph
› To perform the initialization of the data

structures below
• Disjoint Set ADT’s for the trees (recall

Up tree implementation of Union-Find)
• Binary heap for edges

4

MSTs 19

Example
1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

1

MSTs 20

Initialization
1

2 3 4

6 5

Initially, Forest of 6 trees

F= {{1},{2},{3},{4},{5},{6}}

Edges in a heap (not
shown)

MSTs 21

Step 1
1

2 3 4

6 5

Select edge with lowest
cost (2,5)

Find(2) = 2, Find (5) = 5

Union(2,5)

F= {{1},{2,5},{3},{4},{6}}

1 edge accepted 1

MSTs 22

Step 2
1

2 3 4

6 5

Select edge with lowest
cost (2,6)

Find(2) = 2, Find (6) = 6

Union(2,6)

F= {{1},{2,5,6},{3},{4}}

2 edges accepted 1

1

MSTs 23

Step 3
1

2 3 4

6 5

Select edge with lowest
cost (1,3)

Find(1) = 1, Find (3) = 3

Union(1,3)

F= {{1,3},{2,5,6},{4}}

3 edges accepted 1

1

1

MSTs 24

Step 4
1

2 3 4

6 5

Select edge with lowest
cost (5,6)

Find(5) = 2, Find (6) = 2

Do nothing

F= {{1,3},{2,5,6},{4}}

3 edges accepted 1

1

1

5

MSTs 25

Step 5
1

2 3 4

6 5

Select edge with lowest
cost (3,4)

Find(3) = 1, Find (4) = 4

Union(1,4)

F= {{1,3,4},{2,5,6}}

4 edges accepted 1

1

1

3

MSTs 26

Step 6
1

2 3 4

6 5

Select edge with lowest
cost (4,5)

Find(4) = 1, Find (5) = 2

Union(1,2)

F= {{1,3,4,2,5,6}}

5 edges accepted : end

Total cost = 10

Although there is a unique
spanning tree in this
example, this is not
generally the case

1

1

1

3

4

MSTs 27

Kruskal’s Algorithm Analysis

• Initialize forest O(n)
• Initialize heap O(m), m = |E|
• Loop performed m times

› In the loop one Deletemin O(logm)
› Two Find, each O(logn)
› One Union (at most) O(1)

• So worst case O(mlogm) = O(mlogn)

MSTs 28

Time Complexity Summary

• Recall that m = |E| = O(V2) = O(n2)
• Prim’s runs in O((n+m) log n)
• Kruskal’s runs in O(mlogm) = O(mlogn)
• In practice, Kruskal has a tendency to

run faster since graphs might not be
dense and not all edges need to be
looked at in the Deletemin operations

