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Reading

• Chapter 9
› Section 9.5
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Spanning Tree

• Given (connected) G(V,E) a spanning 
tree T(V’,E’):
› Spans the graph (V’ = V)
› Forms a tree (no cycles); E’ has |V| -1 

edges
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Minimum Spanning Tree

• Edges are weighted: find minimum cost 
spanning tree

• Applications
› Find cheapest way to wire your house
› Find minimum cost to send a message on 

the Internet
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Basic Strategy

• Strategy: 
› Add an edge of minimum cost that does 

not create a cycle (greedy algorithm)
› Repeat |V| -1 times
› Correct since if we could replace an edge 

with one of lower cost, the algorithm would 
have picked it up
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Two Algorithms

• Prim: (build tree incrementally)
› Pick lower cost edge connected to known 

(incomplete) spanning tree that does not create a 
cycle and expand to include it in the tree

• Kruskal: (build forest that will finish as a tree)
› Pick lower cost edge not yet in a tree that does not 

create a cycle and expand to include it 
somewhere in the forest
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Prim and Kruskal et al.

Robert Prim (1921-)                                 Joseph Kruskal (1929-

Rediscover algorithms (1957)                            (1965)

Based on Otakar Boruvka (1899-1995) 
MST (1926) to cover electrical network in 
Bohemia)

Published in Czech in 1934 by 
Jarnik (1897-1970)
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Starting from empty T, 
choose a vertex at 
random and initialize

V = {1}, E’ ={}
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Prim’s algorithm
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Choose the vertex u not in 
V such that edge weight 
from u to a vertex in V is 
minimal (greedy!)

V={1,3} E’= {(1,3)}
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Prim’s algorithm
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Repeat  until all vertices have 
been chosen

Choose the vertex u not in V
such that edge weight from v to a 
vertex in V is minimal (greedy!)

V= {1,3,4} E’= {(1,3),(3,4)}

V={1,3,4,5} E’={(1,3),(3,4),(4,5)}

….

V={1,3,4,5,2,6}

E’={(1,3),(3,4),(4,5),(5,2),(2,6)}
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Prim’s algorithm
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Repeat  until all vertices have 
been chosen

V={1,3,4,5,2,6}

E’={(1,3),(3,4),(4,5),(5,2),(2,6)} 

Final Cost: 1 + 3 + 4 + 1 + 1 = 10
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Prim’s Algorithm 
Implementation

• Assume adjacency list representation
Initialize connection cost of each node to “inf” and “unmark” them
Choose one node, say v and set cost[v] = 0 and prev[v] =0
While they are unmarked nodes

Select the unmarked node u with minimum cost; mark it
For each unmarked node w adjacent to u

if cost(u,w) < cost(w) then cost(w) := cost (u,w)
prev[w] = u

• Looks a lot like Dijkstra’s algorithm!
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Prim’s algorithm Analysis

• Like Dijkstra’s algorithm
• If the “Select the unmarked node u with 

minimum cost” is done with binary heap 
then O((n+m)logn)
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Kruskal’s Algorithm

• Select edges in order of increasing cost
• Accept an edge to expand tree or forest 

only if it does not cause a cycle
• Implementation using adjacency list, 

priority queues and disjoint sets
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Kruskal’s Algorithm
Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost
Repeat until |V| -1 edges have been accepted {

Deletemin edge from priority queue
If it forms a cycle then discard it
else accept the edge – It will join 2 existing trees yielding a larger tree 

and reducing the forest by one tree
}
The accepted edges form the minimum spanning tree
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Detecting Cycles

• If the edge to be added (u,v) is such 
that vertices u and v belong to the same 
tree, then by adding (u,v) you would 
form a cycle
› Therefore to check, Find(u) and Find(v). If 

they are the same discard (u,v) 
› If they are different Union(Find(u),Find(v))
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Properties of trees in K’s
algorithm

• Vertices in different trees are disjoint
› True at initialization and Union won’t modify the 

fact for remaining trees
• Trees form equivalent classes under the 

relation “is connected to”
› u connected to u  (reflexivity)
› u connected to v implies v connected to u 

(symmetry)
› u  connected to v and v connected to w implies a 

path from u to w so u connected to w (transitivity)
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K’s Algorithm Data Structures

• Adjacency list for the graph 
› To perform the initialization of the data 

structures below
• Disjoint Set ADT’s for the trees (recall 

Up tree implementation of Union-Find)
• Binary heap for edges
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Example
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Initialization
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Initially, Forest of 6 trees

F= {{1},{2},{3},{4},{5},{6}}

Edges in a heap (not 
shown)
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Step 1
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Select edge with lowest 
cost (2,5)

Find(2) = 2, Find (5) = 5

Union(2,5)

F= {{1},{2,5},{3},{4},{6}}

1 edge accepted 1
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Step 2
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Select edge with lowest 
cost (2,6)

Find(2) = 2, Find (6) = 6

Union(2,6)

F= {{1},{2,5,6},{3},{4}}

2 edges accepted 1

1
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Step 3
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Select edge with lowest 
cost (1,3)

Find(1) = 1, Find (3) = 3

Union(1,3)

F= {{1,3},{2,5,6},{4}}

3 edges accepted 1

1

1
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Step 4
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Select edge with lowest 
cost (5,6)

Find(5) = 2, Find (6) = 2

Do nothing

F= {{1,3},{2,5,6},{4}}

3 edges accepted 1

1

1
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Step 5
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Select edge with lowest 
cost (3,4)

Find(3) = 1, Find (4) = 4

Union(1,4)

F= {{1,3,4},{2,5,6}}

4 edges accepted 1
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Step 6
1
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Select edge with lowest 
cost (4,5)

Find(4) = 1, Find (5) = 2

Union(1,2)

F= {{1,3,4,2,5,6}}

5 edges accepted : end

Total cost = 10

Although there is a unique 
spanning tree in this 
example, this is not 
generally the case
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Kruskal’s Algorithm Analysis

• Initialize forest O(n)
• Initialize heap O(m), m = |E|
• Loop performed m times

› In the loop one Deletemin O(logm)
› Two Find, each O(logn)
› One Union (at most) O(1)

• So worst case O(mlogm) = O(mlogn)
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Time Complexity Summary

• Recall that m = |E| = O(V2) = O(n2 )
• Prim’s runs in O((n+m) log n)
• Kruskal’s runs in O(mlogm) = O(mlogn)
• In practice, Kruskal has a tendency to 

run faster since graphs might not be 
dense and not all edges need to be 
looked at in the Deletemin operations


