Mathematical Background

CSE 373
Data Structures

Mathematical Background

- Today, we will review:
, Logs and exponents
, Series
, Recursion
, Motivation for Algorithm Analysis

Unsigned binary numbers

- For unsigned numbers in a fixed width field
> the minimum value is 0
, the maximum value is $2^{n}-1$, where n is the number of bits in the field
, The value is $\sum_{i=0}^{i=n-1} a_{i} 2^{i}$
- Each bit position represents a power of 2 with $a_{i}=0$ or $a_{i}=1$
5 January 2007

Logs and exponents

- Definition: $\log _{2} x=y$ means $x=2^{y}$
> $8=2^{3}$, so $\log _{2} 8=3$
, $65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} x$ tells you how many bits are needed to hold x values
> 8 bits holds 256 numbers: 0 to $2^{8}-1=0$ to 255
> $\log _{2} 256=8$

5 January 2007
CSE 373 - Math Background
5

Facts about Floor and Ceiling

1. $X-1<\lfloor X\rfloor \leq x$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$ if n is an integer

Other log properties

- $\log A / B=\log A-\log B$
- $\log \left(A^{B}\right)=B \log A$
- $\log \log X<\log X<X$ for all $X>0$
> $\log \log X=Y$ means $2^{2^{\gamma}}=X$
, $\log X$ grows slower than X
- called a "sub-linear" function

Floor and Ceiling

$\lfloor X\rfloor$ Floor function: the largest integer $\leq x$

$$
\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2
$$

$\lceil X\rceil$ Ceiling function: the smallest integer $\geq X$
$\lceil 2.3\rceil=3$
$\lceil-2.3\rceil=-2$
$\lceil 2\rceil=2$

Properties of logs (of the

 mathematical kind)- We will assume logs to base 2 unless specified otherwise
- $\log A B=\log A+\log B$
, $A=2^{\log _{2} A}$ and $B=2^{\log _{2} B}$
, $A B=2^{\log _{2} A} \cdot 2^{\log _{2} B}=2^{\log _{2} A+\log _{2} B}$
, so $\log _{2} A B=\log _{2} A+\log _{2} B$
, [note: $\log A B \neq \log A \cdot \log B]$
5 January 2007
CSE 373 - Math Background
10

A \log is a \log is a \log

- Any base x log is equivalent to base 2 log within a constant factor
$\log _{x} B=\log _{x} B$
$B=2^{\log _{2} B}$
substitution ()$^{\log _{x} B}=B \quad x^{\log _{x} B}=B$
$\left(2^{\log _{2} x}\right)^{\log _{x} B}=2^{\log _{2} B}$ by def. of logs
$2^{\log _{2} \times \log _{x} B}=2^{\log _{2} B}$
$\log _{2} x \log _{x} B=\log _{2} B$
$\log _{x} B=\frac{\log _{2} B}{\log _{2} x}$
5 January 2007
CSE 373 - Math Background
12

Arithmetic Series

- $\mathrm{S}(\mathrm{N})=1+2+\ldots+\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{i}$
- The sum is
, $S(1)=1$
, $S(2)=1+2=3$
, $S(3)=1+2+3=6$
- $\sum_{i=1}^{N} i=\frac{N(N+1)}{2} \quad \begin{aligned} & \text { Why is this formula useful } \\ & \text { when you analyze algorithms? }\end{aligned}$

Algorithm Analysis

- Consider the following program segment:
x:= 0;
for $i=1$ to N do
for $j=1$ to i do
$\mathrm{x}:=\mathrm{x}+1$;
- What is the value of x at the end?

Analyzing Mergesort

```
Mergesort(p : node pointer) : node pointer {
    Case {
    p = null : return p; //no elements
    p.next = null : return p; //one element
    p.next = null : return p; //one element
    else
        d : duo pointer; // duo has two fields first,second
        d := Split(p);
        return Merge(Mergesort(d.first),Mergesort(d.second));
    }
                            T(n) is the time to sort n items.
                                T(0),T(1) \leqc
                                T(n)\leqT(\lfloorn/2\rfloor)+T([n/2\rceil) +dn
```

- Total number of times x is incremented is the number of "instructions" executed

$$
=\quad 1+2+3+\ldots=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- You've just analyzed the program!
> Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N , $\mathrm{O}\left(\mathrm{N}^{2}\right)$
5 January 2007
CSE 373 - Math Background

Mergesort Analysis

 Upper Bound \qquad[^0] 17

Recursion Used Badly

- Classic example: Fibonacci numbers F_{n}

$$
0,1,1,2,3,5,8,13,21,
$$

, $F_{0}=0, F_{1}=1$ (Base Cases)
> Rest are sum of preceding two $F_{n}=F_{n-1}+F_{n-2}(n>1)$

Leonardo Pisano Fibonacci (1170-1250)

Recursion

- A method calling itself, directly or indirectly
- Works because of how method calls are processed anyway
, A stack holds parameters and local variables for each invocation

Recursion Practice

```
/** Return base }\mp@subsup{}{}{\mathrm{ exp}
    exp >= 0
*/
double power(double base, int exp);
```


Recursion Practice

```
/** Return the largest value in a non-
    empty array
*/
double findMax(double[ ] nums);
```


Recursion vs Iteration

- A recursive algorithm can always be expressed iteratively, and vice versa
- Recursion is often more compact and elegant
- Iteration is often more efficient
- Recursion is natural when the data structure is recursive

Kickoff: Common Trick

double findMax(double[] nums) \{
return helper(nums, 0);
\}
/** Find the largest value starting at position
"start" of a non-empty array. */
double helper (double[] nums, int start);

5 January 2007
CSE 373 - Math Background
24

Recursive Procedure for Fibonacci Numbers		
fib(n : integer): integer \{ Case \{ $n \leq 0$: return 0; else : return fib(n-1) + fib(n-2); $\}$ $\}$ - Easy to write: looks like the definition of F_{n} - But, can you spot the big problem?		
5.	Csesar.anamatom	25

Fibonacci Analysis Lower Bound

$T(n)$ is the time to compute fib(n).
$T(0), T(1) \geq 1$
$T(n) \geq T(n-1)+T(n-2)$
It can be shown by induction that $T(n) \geq \phi^{n-2}$ where

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
, Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case

5 January 2007

Motivation for Algorithm

 Analysis- Suppose you are given two algorithms A and B for solving a_{0} problem
- The running times $T_{A}(N)$ and $T_{B}(N)$ of A and B as a function of input size N are given

5 January 2007 CSE 373 - Math Background

30

More Motivation

- For large N, the running time of A and B
Now which
algorithm would
you choose?

Big O

- Mainly used to express upper bounds on time of algorithms. " n " is the size of the input.
- Definition: Let T and f be functions of the natural numbers. $T(n)$ is $O(f(n))$ if there are constants c and n_{0} such that
$T(n) \leq c f(n)$ for all $n \geq n_{0}$.
- $2 * \mathrm{n}$ is $\mathrm{O}(\mathrm{n})$
- $2+\mathrm{n}$ is $\mathrm{O}(\mathrm{n})$
- $10000 n+10 n \log _{2} n$ is $O(n \log n)$
-. $00001 n^{2}$ is not $O(n \log n)$
5 January 2007
CSE 373 - Math Background
33

Asymptotic Behavior

- The "asymptotic" performance as $\mathrm{N} \rightarrow \infty$, regardless of what happens for small input sizes N , is generally most important .
- Performance for small input sizes may matter in practice, if you are sure that small N will be common forever.
- We will compare algorithms based on how they scale for large values of N.

Big O Informality

- Instead of saying "T is O(f)" people often say things like
, "T is Big O of f "
, "T = O(f)"
, "T is bounded by f ", etc.
- Be careful how you understand "T = $\mathrm{O}(\mathrm{f})$ ". This is not an equation!

Why Order Notation

- The difference in performance between two computers is generally a constant multiple (roughly).
> The n_{0} in our definition takes that into account
- In asymptotic performance ($\mathrm{n} \rightarrow \infty$) the low order terms are "dominated" by the higher order terms

5 January 2007
CSE 373 - Math Background 35

Some Basic Time Bounds

- In order best to worst:
, Logarithmic time is $O(\log n)$
, Linear time is $O(n)$
, $O(n \log n)$
, Quadratic time is $0\left(n^{2}\right)$
, Cubic time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
, Polynomial time is $O\left(n^{k}\right)$ for some k.
, Exponential time is $\mathrm{O}\left(\mathrm{c}^{n}\right)$ for some $\mathrm{c}>1$.
- Advice: learn these names and their order!

5 January 2007 CSE 373 - Math Background
36

Kinds of Analysis

- Asymptotic - uses order notation, ignores constant factors and low order terms.
- Upper bound vs. lower bound
- Worst case - time bound valid for all inputs of length n.
- Average case - time bound valid on average requires a distribution of inputs.
- Amortized - worst case time averaged over a sequence of operations.
- Others - best case, common case ($80 \%-20 \%$) etc.

What to Analyze

- Execution time
, Number of instructions executed
, Number of some particular operation executed
- Example: for sorting algorithms, we might just count the number of comparisons made
- Memory
- Disc accesses, network transfer time, power, etc.

[^0]: $T(n) \leq 2 T(n / 2)+d n \quad$ Assuming n is a power of 2 $\leq 2(2 T(n / 4)+d n / 2)+d n$
 $=4 \mathrm{~T}(\mathrm{n} / 4)+2 \mathrm{dn}$
 $\leq 4(2 T(n / 8)+d n / 4)+2 d n$
 $=8 T(n / 8)+3 d n$
 \vdots
 $\leq 2^{\mathrm{k}} \mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\mathrm{kdn}$
 $=n T(1)+k d n \quad$ if $n=2^{k} \quad n=2^{k}, k=\log n$
 $\leq \mathrm{cn}+\mathrm{dn} \log _{2} \mathrm{n}$
 $=\mathrm{O}(\mathrm{n} \log \mathrm{n})$
 5 January 2007 CSE 373 - Math Background 17

