

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
, File directories or folders
, Moves in a game
> Hierarchies in organizations
- Can build a tree to support fast searching

Definition and Tree Trivia

- A tree is a set of nodes,i.e., either
, it's an empty set of nodes, or
, it has one node called the root from which zero or more trees (subtrees) descend
- A tree with N nodes always has $\mathrm{N}-1$ edges (prove it by induction)
- A node has a single parent
- Two nodes in a tree have at most one path between them

More definitions

- Leaf (aka external) node: node without children
- Internal node: a node that is not a leaf
- Siblings: two nodes with the same parent

More Tree Jargon

- Length of a path = number of edges
- Depth of a node $\mathrm{N}=$ length of path from root to N
- Height of node $N=$ length of longest path from N to a leaf
- Depth of tree = depth of deepest node
- Height of tree = height of root
depth $=0$,
height $=2$

More jargon.....

- If there is a path from node u to node v, u is an ancestor of v
- Yes but... path in which direction? Better to say:
, Recursive definition: u is an ancestor of v if $u=v$ or u is an ancestor of the parent of v
- Similar definition for descendent

Implementation of Trees (1)

- One possible pointer-based implementation
> tree nodes with value and a pointer to each child
> but how many pointers should we allocate space for?
, OK if we use a pointer to a "collection" of children
, But how should the "collection" be implemented? (doubly linked list?)
, Should there be a parent link or not?

Paths

- Can a non-zero path from node N reach node N again?
, No. Trees can never have cycles (loops)
- Does depth (height) of nodes in a nonzero path increase or decrease?
, Depth always increases in a non-zero path
, Height always decreases in a non-zero path

Tree Operations

- The usual (size(), isEmpty()...
- Accessor methods
> root (); error if the tree is empty
> parent (v) ;error if v is the root
, children(v);returns an iterable collection (i.e.,ordered list) of children
- Queries (isRoot () etc...)
- How about iterators (or positions?)

Implementation of Trees (2)

- A more flexible pointer-based implementation
, $1^{\text {st }}$ Child / Next Sibling List Representation
> Each node has 2 pointers: one to its first child and one to next sibling
, Can handle arbitrary number of children
, Having a parent link is an orthogonal decision

Binary Trees

- Every node has at most two children
, Most popular tree in computer science
- (But n-way branching common in databases, file structures;
e.g., B-trees)
- Given N nodes, what is the minimum depth of a binary tree?
, At depth d, you can have $\mathrm{N}=2^{\mathrm{d}}$ to $\mathrm{N}=2^{\mathrm{d}+1}-1$ nodes

$$
2^{\mathrm{d}} \leq \mathrm{N} \leq 2^{\mathrm{d}+1}-1 \text { implies } \mathrm{d}_{\text {min }}=\left\lfloor\log _{2} \mathrm{~N}\right\rfloor
$$

Maximum depth vs node

 count- What is the maximum depth of a binary tree?
> Degenerate case: Tree is a linked list!
, Maximum depth = N-1
- Goal: Would like to keep depth at around $\log \mathrm{N}$ to get better performance than linked list for operations like Find

Traversing Binary Trees

- The definitions of the traversals are recursive definitions. For example:
, Visit the root
, Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
, Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively
- Traversal definitions can be extended to general (non-binary) trees

Traversing Binary Trees

- Preorder: Node, then Children (starting with the left) recursively + * + A B C D
- Inorder: Left child recursively, Node, Right child recursively $A+B * C+D$ (A)
- Postorder: Children recursively, then Node AB+C*D+

