AVL Trees

CSE 373
Data Structures
Winter 2007

Readings

• Reading Sec. 4.4

AVL Trees

Trees

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is d = [log₂N] for a binary tree with N nodes
 - > What is the best case tree?
 - > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

AVL Trees

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - › Problem: Lack of "balance":
 - compare depths of left and right subtree
 - > Unbalanced degenerate tree

AVL Trees

Balanced and unbalanced BST 1 2 3 4 5 AVI. Trees 5

Approaches to balancing trees

- Don't balance
 - › May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- · Pretty good balance
 - > Only allow a little out of balance
- Adjust on access
 - > Self-adjusting

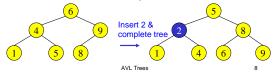
Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - › Weight-balanced trees
 - > Red-black trees;
 - > Splay trees and other self-adjusting trees
 - B-trees and other (e.g. 2-4 trees) multiway search trees

AVL Trees

Perfect Balance

- Want a complete tree after every operation
 - > tree is full except possibly in the lower right
- · This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree



AVL Trees (1962)

- · Named after 2 Russian mathematicians
- Georgii Adelson-Velsky (1922 ?)
- Evgenii Mikhailovich Landis (1921-1997)

AVL Trees

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

AVL Trees

10

Height of an AVL Tree

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis
 - N(0) = 1, N(1) = 2
- Induction
 - N(h) = N(h-1) + N(h-2) + 1

- Solution (recall Fibonacci analysis)
 - $\rightarrow N(h) \ge \phi^h \quad (\phi \approx 1.62)$

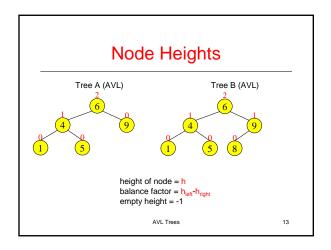
AVL Trees

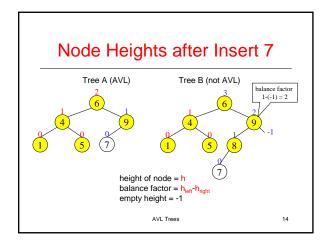
11

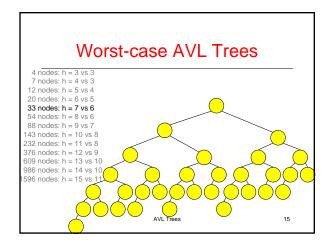
Height of an AVL Tree

- $N(h) \ge \phi^h \quad (\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
 - \rightarrow n \geq N(h)
 - $n \ge \phi^h$ hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - \rightarrow h \leq 1.44 log₂n (i.e., Find takes O(logn))

es

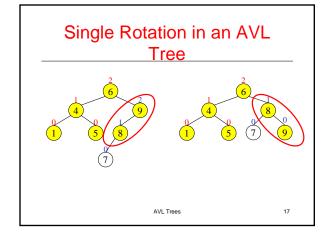


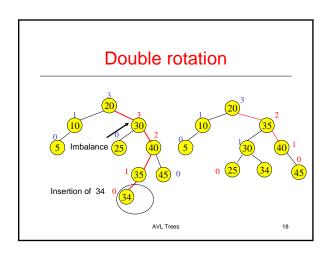




Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - > If a new balance factor (the difference h_{left} h_{right}) is 2 or –2, adjust tree by *rotation* around the node





Insertions in AVL Trees Let the node that needs rebalancing be α . There are 4 cases: Outside Cases (require single rotation): 1. Insertion into left subtree of left child of α .

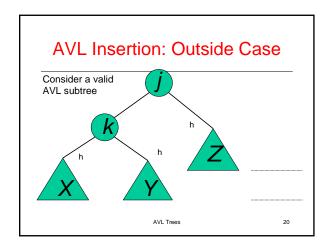
2. Insertion into right subtree of right child of α . Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of $\alpha.$
- 4. Insertion into left subtree of right child of α .

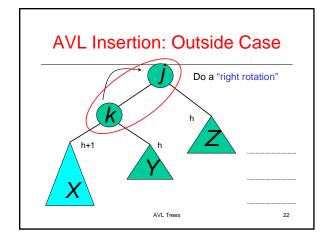
The rebalancing is performed through four separate rotation algorithms.

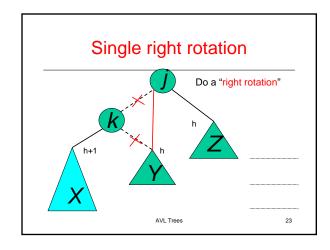
AVL Trees

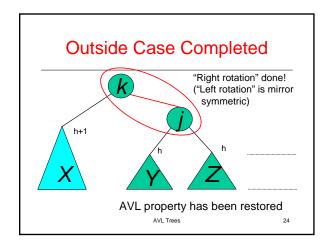
19

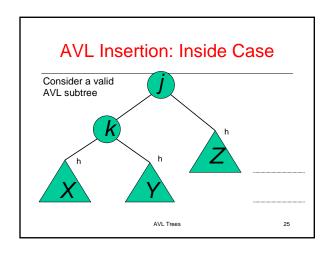


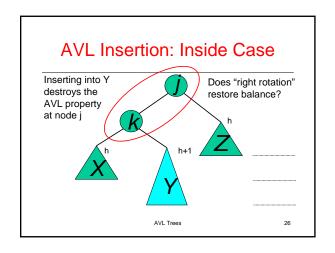
AVL Insertion: Outside Case Inserting into X destroys the AVL property at node j AVL Trees 21

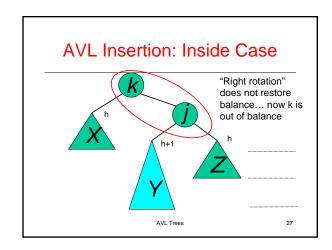


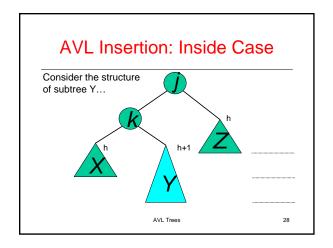


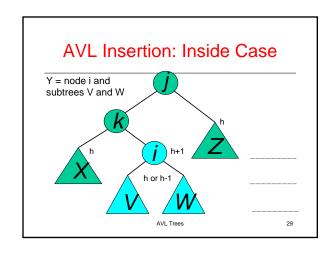


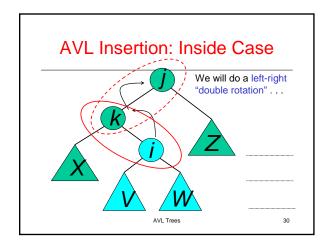


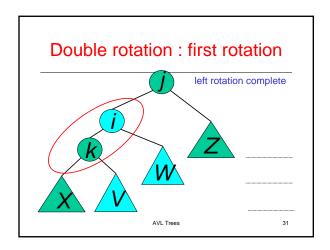


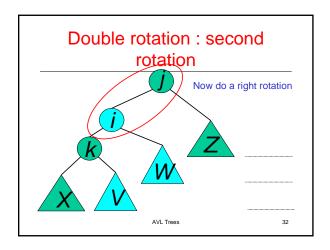


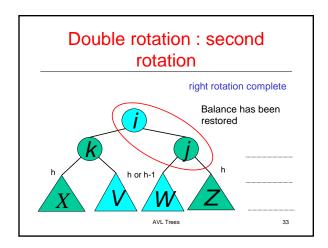


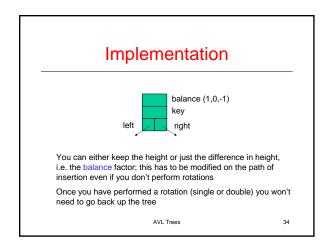


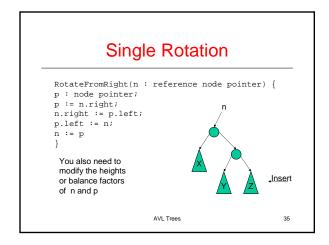


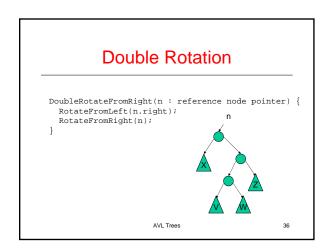


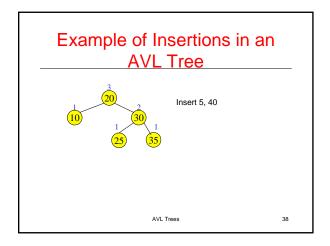


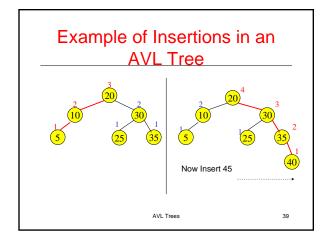


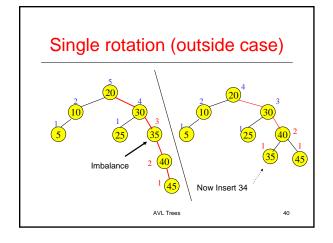


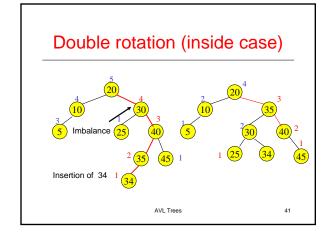








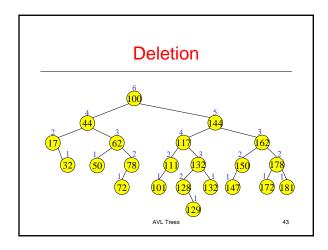


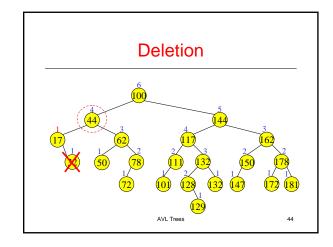


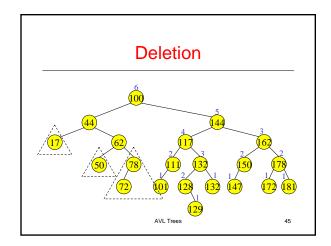
AVL Tree Deletion Similar but more complex than insertion Rotations and double rotations needed to rebalance Imbalance may propagate upward so that many rotations may be needed.

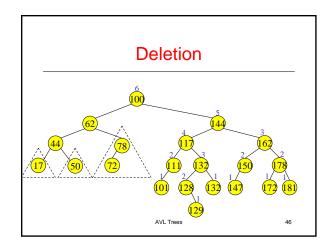
AVL Trees

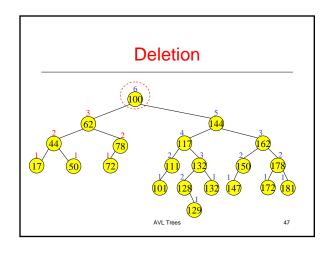
42

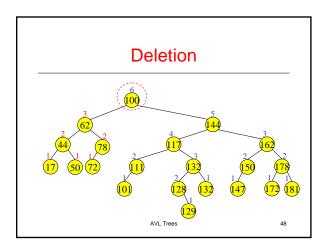


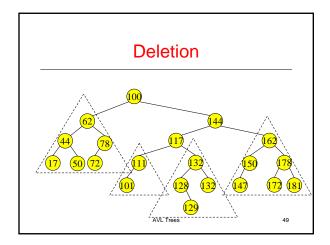


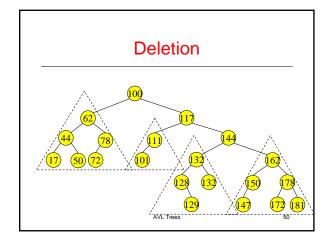


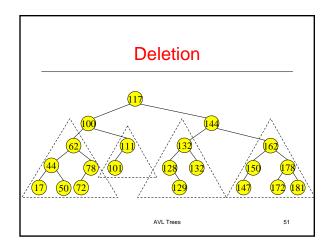


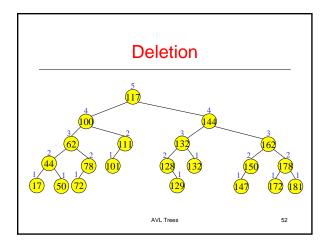












Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log n) since AVL trees are always balanced.
- Insertion and deletions are also O(log n)
- The height balancing adds no more than a constant factor to the speed of insertion.

- Arguments against using AVL trees:

 1. Difficult to program & debug; more space for balance factor.

 2. Asymptotically faster but rebalancing costs time.

 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- May be OK to have O(n) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

AVL Trees

Non-recursive insertion or the hacker's delight

- · Key observations;
 - › At most one rotation
 - > Balance factor: 2 bits are sufficient (-1 left, 0 equal, +1 right)
 - > There is one node on the path of insertion, say S, that is "critical". It is the node where a rotation can occur and nodes above it won't have their balance factors modified

Non-recursive insertion

- Step 1 (Insert and find S):
 - Find the place of insertion and identify the last node S on the path whose BF ≠ 0 (if all BF on the path = 0, S is the root).
 - Insert
- Step 2 (Adjust BF's)
 - Restart from the child of S on the path of insertion. (note: all the nodes from that node on on the path of insertion have BF = 0.)If the path traversed was left (right) set BF to -1 (+1) and repeat until you reach a null link (at the place of insertion)

AVL Trees 55

Non-recursive insertion (ct'd)

- Step 3 (Balance if necessary):
 - If BF(S) = 0 (S was the root) set BF(S) to the direction of insertion (the tree has become higher)
 - If BF(S) = -1 (+1) and we traverse right (left) set BF(S) = 0 (the tree has become more balanced)
 - If BF(S) = -1 (+1) and we traverse left (right), the tree becomes unbalanced. Perform a single rotation or a double rotation depending on whether the path is left-left (right-right) or left-right (right-left)

