Splay Trees

CSE 373
Data Structures
Winter 2007

Readings

* Reading Chapter 4

> Section 4.5

Splay Trees

Self adjusting Trees

¢ Ordinary binary search trees have no balance
conditions

> what you get from insertion order is it
« Balanced trees like AVL trees enforce a
balance condition when nodes change
> tree is always balanced after an insert or delete
 Self-adjusting trees get reorganized over time
as nodes are accessed
> Tree adjusts after insert, delete, or find

Splay Trees 3

Splay Trees

» Splay trees are tree structures that:
> Are not perfectly balanced all the time
> Data most recently accessed is near the root.
(principle of locality; 80-20 “rule”)
» The procedure:

> After node X is accessed, perform “splaying”
operations to bring X to the root of the tree.

> Do this in a way that leaves the tree more
balanced as a whole

Splay Trees

Splay Trees (1985)

» Daniel Sleator (1954 -) & Robert Tarjan (1948 -)

A

Splay Trees 5

Splay Tree Terminology

« Let X be a non-root node with > 2 ancestors.
« Pis its parent node.
« G is its grandparent node.

P PO P
DN
x> O

Splay Trees

Zig-Zig and Zig-Zag

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

Zig—<zig\. @
(®] ®
® @

Splay Trees 7

Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

parent
element
left right

2. When X is accessed, apply one of six rotation routines.
« Single Rotations (X has a P (the root) but no G)
ZigFromLeft, ZigFromRight

« Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Trees 8

Zig at depth 1 (root)

» “Zig” is just a single rotation, as in an AVL tree
* Let R be the node that was accessed (e.g. using

Find) oot
@: ZigFromLeft p\
/\

()
/\
A B B C

» ZigFromLeft moves R to the top —faster access
next time

Splay Trees 9

Zig at depth 1

» Suppose Q is now accessed using Find

0 root

C ZigFromRight A

\
A B B C

» ZigFromRight moves Q back to the top

Splay Trees 10

Zig-Zag operation

» “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

R
\ @ /NG
% D (zigrromRighty \R/D (ZigFromLef) ~ Q
0 ; pa—

\\‘\B:
O AAY
Q. C A B CD
/\
B C A B
ZigZagFromLeft
Splay Trees 11

Zig-Zig operation

A

/\
B

 “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed))

D Semisplay R Full splay ANQS
Semisply, Jull splay |

(A A
R C (ZigFromLefy A B C D (ZigFromLefty B /P\
D

(&

~

ZigZigFromLeft

Splay Trees 12

Decreasing depth -
"autobalance"

Q F Q A
I\ gﬁ\ VAN TANENA
R E 5 D P
I\ (AN JATEA)
5 D A S B R B C E
\ '\ I\
(;T? c B !R c D
A B cCD
(a) (b} {c) {dy
Find(T) Find(R)
Splay Trees 13

Splay Tree Insert and Delete

* Insert x
> Insert x as normal then splay x to root.
« Delete x (there are several options)

> “Delete” x as in a BST . This yields a node
y that is really disappearing

> Splay y’s parent to the root

Splay Trees 14

Example Insert

* Inserting in order 1,2,3,...,8
» Without self-adjustment

O(n?) time for n Insert

Splay Trees 15

With Self-Adjustment

1 ®

) @ ZigFromRight @

® @
®

o e

Splay Trees 16

With Self-Adjustment

4 ®
@

Each Insert takes O(1) time therefore O(n) time for n Insert!!

Splay Trees 17

Example Deletion

é s?s (.

(Zlg zag)

CSX starting here

® ®
@ @

Splay Trees 18

Analysis of Splay Trees

Splay Trees vs. AVL Trees

¢ Splay trees tend to be balanced

> M operations takes time O(M log N) for M > N
operations on N items. (proof is difficult)

> Amortized O(log n) time.
« Splay trees have good “locality” properties
> Recently accessed items are near the root of the
tree.
> Items near an accessed one are pulled toward the
root.

Splay Trees 19

AVL trees: INSERT and DELETE operations keep tree balanced;
> FIND operations have no effect.

Splay trees:
> Repeated FIND operations tend to produce balanced trees.

Splay Trees 20

