
1

Splay Trees

CSE 373
Data Structures

Winter 2007

Splay Trees 2

Readings

• Reading Chapter 4
› Section 4.5

Splay Trees 3

Self adjusting Trees

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed
› Tree adjusts after insert, delete, or find

Splay Trees 4

Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time
› Data most recently accessed is near the root.

(principle of locality; 80-20 “rule”)
• The procedure:

› After node X is accessed, perform “splaying”
operations to bring X to the root of the tree.

› Do this in a way that leaves the tree more
balanced as a whole

Splay Trees 5

Splay Trees (1985)
• Daniel Sleator (1954 -) & Robert Tarjan (1948 -)

Splay Trees 6

• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.

P

G

X

G

P

X

G

P

X

G

P

X

Splay Tree Terminology

2

Splay Trees 7

Zig-Zig and Zig-Zag

4

G 5

1 P Zig-zag

G

P 5

X 2

Zig-zig

X

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

Splay Trees 8

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight
• Double Rotations (X has both a P and a G)

ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Tree Operations

parent

rightleft
element

Splay Trees 9

Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using

Find)

• ZigFromLeft moves R to the top →faster access
next time

ZigFromLeft

root

Splay Trees 10

Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top

ZigFromRight

root

Splay Trees 11

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

Splay Trees 12

Zig-Zig operation
• “Zig-Zig” consists of two single rotations

of the same direction (R is the node that
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

3

Splay Trees 13

Decreasing depth -
"autobalance"

Find(T) Find(R)

Splay Trees 14

Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x (there are several options)
› “Delete” x as in a BST . This yields a node

y that is really disappearing
› Splay y’s parent to the root

Splay Trees 15

Example Insert

• Inserting in order 1,2,3,…,8
• Without self-adjustment

1
2

3
4

5
6

7
8

O(n2) time for n Insert

Splay Trees 16

With Self-Adjustment

1

2

1 2

1

ZigFromRight

2

1 3
ZigFromRight

2

1

3

1

2

3

Splay Trees 17

With Self-Adjustment

ZigFromRight2

1

34
4

2

1

3

4

Each Insert takes O(1) time therefore O(n) time for n Insert!!

Splay Trees 18

Example Deletion
10

155

201382

96

155

2013

10

2

6

9

(zig-zag)
starting here10

15

5

2013

2 6

9

(Exchange)

y

4

Splay Trees 19

Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N

operations on N items. (proof is difficult)
› Amortized O(log n) time.

• Splay trees have good “locality” properties
› Recently accessed items are near the root of the

tree.
› Items near an accessed one are pulled toward the

root.

Splay Trees 20

Splay Trees vs. AVL Trees
• AVL trees: INSERT and DELETE operations keep tree balanced;

› FIND operations have no effect.
• Splay trees:

› Repeated FIND operations tend to produce balanced trees.

