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Readings

• Reading Chapter 4
› Section 4.5
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Self adjusting Trees

• Ordinary binary search trees have no balance 
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a 
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time 
as nodes are accessed
› Tree adjusts after insert, delete, or find

Splay Trees 4

Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time
› Data most recently accessed is near the root. 

(principle of locality; 80-20 “rule”)
• The procedure:

› After node X is accessed, perform “splaying”
operations to bring X to the root of the tree.

› Do this in a way that leaves the tree more 
balanced as a whole
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Splay Trees (1985)
• Daniel  Sleator (1954 -) & Robert Tarjan (1948 -)
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• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.
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Splay Tree Terminology
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Zig-Zig and Zig-Zag
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Zig-zig
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Parent and grandparent
in same direction.

Parent and grandparent
in different directions.
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1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight
• Double Rotations (X has both a P and a G)

ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Tree Operations

parent

rightleft
element
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Zig at depth 1 (root)
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using 

Find)

• ZigFromLeft moves R to the top →faster access 
next time

ZigFromLeft

root
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Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top

ZigFromRight

root
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Zig-Zag operation

• “Zig-Zag” consists of two rotations of the 
opposite direction (assume R is the node that 
was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft
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Zig-Zig operation
• “Zig-Zig” consists of two single rotations 

of the same direction (R is the node that 
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft
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Decreasing depth -
"autobalance"

Find(T) Find(R)
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Splay Tree Insert and Delete

• Insert x
› Insert x as normal then splay x to root.

• Delete x (there are several options)
› “Delete” x as in a BST . This yields a node 

y that is really disappearing
› Splay y’s parent to the root
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Example Insert

• Inserting in order 1,2,3,…,8
• Without self-adjustment
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O(n2) time for n Insert
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With Self-Adjustment
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With Self-Adjustment
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Each Insert takes O(1) time therefore O(n) time for n Insert!!
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Example Deletion
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Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N 

operations on N items. (proof is difficult)
› Amortized O(log n) time.

• Splay trees have good “locality” properties
› Recently accessed items are near the root of the 

tree.
› Items near an accessed one are pulled toward the 

root.
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Splay Trees vs. AVL Trees
• AVL trees: INSERT and DELETE operations keep tree balanced;

› FIND operations have no effect.
• Splay trees:

› Repeated FIND operations tend to produce balanced trees.


