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Readings

* Reading Chapter 4

> Section 4.5

Splay Trees

Self adjusting Trees

¢ Ordinary binary search trees have no balance
conditions

> what you get from insertion order is it
« Balanced trees like AVL trees enforce a
balance condition when nodes change
> tree is always balanced after an insert or delete
 Self-adjusting trees get reorganized over time
as nodes are accessed
> Tree adjusts after insert, delete, or find
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Splay Trees

» Splay trees are tree structures that:
> Are not perfectly balanced all the time
> Data most recently accessed is near the root.
(principle of locality; 80-20 “rule”)
» The procedure:

> After node X is accessed, perform “splaying”
operations to bring X to the root of the tree.

> Do this in a way that leaves the tree more
balanced as a whole

Splay Trees

Splay Trees (1985)

» Daniel Sleator (1954 -) & Robert Tarjan (1948 -)
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Splay Tree Terminology

« Let X be a non-root node with > 2 ancestors.
« Pis its parent node.
« G is its grandparent node.
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Zig-Zig and Zig-Zag

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.
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Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

parent
element
left right

2. When X is accessed, apply one of six rotation routines.
« Single Rotations (X has a P (the root) but no G)
ZigFromLeft, ZigFromRight

« Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight
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Zig at depth 1 (root)

» “Zig” is just a single rotation, as in an AVL tree
* Let R be the node that was accessed (e.g. using

Find) oot
@: ZigFromLeft p\
/\

()
/\
A B B C

» ZigFromLeft moves R to the top —faster access
next time
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Zig at depth 1

» Suppose Q is now accessed using Find

0 root
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» ZigFromRight moves Q back to the top
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Zig-Zag operation

» “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)
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Zig-Zig operation
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 “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed) )
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Decreasing depth -
"autobalance"
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Splay Tree Insert and Delete

* Insert x
> Insert x as normal then splay x to root.
« Delete x (there are several options)

> “Delete” x as in a BST . This yields a node
y that is really disappearing

> Splay y’s parent to the root
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Example Insert

* Inserting in order 1,2,3,...,8
» Without self-adjustment

O(n?) time for n Insert
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With Self-Adjustment
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With Self-Adjustment
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Each Insert takes O(1) time therefore O(n) time for n Insert!!

Splay Trees 17

Example Deletion
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Analysis of Splay Trees

Splay Trees vs. AVL Trees

¢ Splay trees tend to be balanced

> M operations takes time O(M log N) for M > N
operations on N items. (proof is difficult)

> Amortized O(log n) time.
« Splay trees have good “locality” properties
> Recently accessed items are near the root of the
tree.
> Items near an accessed one are pulled toward the
root.
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AVL trees: INSERT and DELETE operations keep tree balanced;
> FIND operations have no effect.

Splay trees:
> Repeated FIND operations tend to produce balanced trees.
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