

- Splay trees tend to be balanced
 - > M operations takes time O(M log N) for M \geq N
 - operations on N items. (proof is difficult)
 - > Amortized O(log n) time.
- Splay trees have good "locality" properties
 - Recently accessed items are near the root of the tree.
 - Items near an accessed one are pulled toward the root.

19

Splay Trees

Splay Trees vs. AVL Trees

- AVL trees: INSERT and DELETE operations keep tree balanced;
 FIND operations have no effect.
 - Splay trees:
 - Repeated FIND operations tend to produce balanced trees.

Splay Trees

20