

Today's Outline

- Announcements
- Assignment \#1 due Thurs, April 9 at 11:45pm
- Email sent to cse373 mailing list - did you get it?
- Have you installed Eclipse and Java yet?
- Queues and Stacks
- Math Review

Proof by Induction

- Powers of 2
- Binary numbers
- Exponents and Logs

04/0109

Homework 1 - Sound Blaster!

Play your favorite song in reverse! Aim:

1. Implement stack ADT two different ways
2. Use to reverse a sound file

Due: Thurs, April 9, 2009
Electronic: at 11:45pm

- 6 - Before summer $078 \quad 12.31 \%$
- 7 - I did not take cse 143 at UW (AP or transfer credit) 3 4.62\%
- Other: 2132.31% (winter 09)

04/01/09
3
04/01/09

Mathematical Induction

Suppose we wish to prove that:
For all $\mathrm{n} \geq \mathrm{n}_{0}$, some predicate $\mathrm{P}(\mathrm{n})$ is true.
We can do this by proving two things:

1. $\mathrm{P}\left(\mathrm{n}_{0}\right)$--- this is called the "basis."
2. If $P(k)$ then $P(k+1)$-- this is called the "induction step."

Example: Basis Step

Prove for all $\mathrm{n} \geq 1$, sum of first n powers of $2=2^{\mathrm{n}}-1$

$$
2^{0}+2^{1}+2^{2}+\ldots+2^{n-1}=2^{n}-1 .
$$

$$
\text { in other words: } \quad 1+2+4+\ldots+2^{\mathrm{n}-1}=2^{\mathrm{n}}-1 .
$$

Proof by induction:
Basis with $\mathrm{n}_{0}=1$:

(left hand side)	$2^{1-1}=2^{0}=1$
(right hand side)	$2^{1}-1=2-1=1$

So true for $\mathrm{n}_{0}=1$
04/01/09
(10)

Example: Inductive Step

- Induction hypothesis: (Assume this is true) $1+2+4+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}}-1$
- Induction step: Now add 2^{k} to both sides: $1+2+4+\ldots 2^{\mathrm{k}-1}+2^{\mathrm{k}}=2^{\mathrm{k}}-1+2^{\mathrm{k}}$

$$
\begin{aligned}
& =2\left(2^{\mathrm{k}}\right)-1 \\
& =2^{\mathrm{k}+1}-1
\end{aligned}
$$

Therefore if the equation is valid for $\mathrm{n}=\mathrm{k}$, it must also be valid for $\mathrm{n}=\mathrm{k}+1$.

- Summary: It is valid for $\mathrm{n}=1$ (basis) and by the induction step it is therefore valid for $\mathrm{n}=2, \mathrm{n}=3, \ldots$
It is valid for all integers greater than 0.

Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
- each "bit" is a 0 or a 1
- an n-bit wide field can represent how many different things?

0000000000101011

Unsigned binary numbers

- For unsigned numbers in a fixed width field
- the minimum value is 0
- the maximum value is $2^{\mathrm{n}}-1$, where n is the number of bits in the field
- The value is $\quad \sum_{i=0}^{i=n-1} a_{i} 2^{i}$
- Each bit position represents a power of 2 with $a_{i}=0$ or $a_{i}=1$

Signed Numbers?

Logarithms and Exponents

- Definition: $\log _{2} x=y$ if and only if $x=2^{y}$
$8=2^{3}$, so $\log _{2} 8=3$
$65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} n$ tells you how many bits are needed to distinguish among n different values.
8 bits can hold any of 256 numbers, for example: 0 to $2^{8}-1$, which is 0 to 255
$\log _{2} 256=8$

04/01/09
12

Floor and Ceiling

$\lfloor X\rfloor$ Floor function: the largest integer $\leq X$
$\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2$
$\lceil X\rceil$ Ceiling function: the smallest integer $\geq X$
$\lceil 2.3\rceil=3 \quad\lceil-2.3\rceil=-2 \quad\lceil 2\rceil=2$

04/01/09

Properties of logs

- We will assume logs to base 2 unless specified otherwise.
- $8=2^{3}$, so $\log _{2} 8=3$, so $2^{\left(\log _{2} 8\right)}=$ \qquad -
Show:
$\log (A \cdot B)=\log A+\log B$
$\mathrm{A}=2^{\log _{2} \mathrm{~A}}$ and $\mathrm{B}=2^{\log _{2} \mathrm{~B}}$
$A \cdot B=2^{\log _{2} A} \cdot 2^{\log _{2} B}=2^{\log _{2} A+\log _{2} B}$

So: $\quad \log _{2} \mathrm{AB}=\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}$

- Note: $\quad \log \mathrm{AB} \neq \log \mathrm{A} \cdot \log \mathrm{B}!$!

04/01/09 17

Facts about Floor and Ceiling

1. $X-1<\lfloor X\rfloor \leq X$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$ if n is an integer

04/01/09

Other log properties

- $\log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B}$
- $\log \left(\mathrm{A}^{\mathrm{B}}\right)=\mathrm{B} \log \mathrm{A}$
- $\log \log X<\log X<X \quad$ for all $X>0$
$-\log \log \mathrm{X}=\mathrm{Y}$ means: $2^{2^{\gamma}}=\mathrm{X}$
$-\log \mathrm{X}$ grows more slowly than X
- called a "sub-linear" function

Note: $\log \log X \neq \log ^{2} X$
$\log ^{2} X=(\log X)(\log X) \quad$ aka "log-squared"

04/01/09
18

A \log is a \log is a \log

- "Any base B \log is equivalent to base $2 \log$ within a constant factor."

$$
\begin{aligned}
& B=2^{\log _{2} B}
\end{aligned}
$$

$$
\begin{aligned}
& x=2^{\log _{2} x} \\
& 2^{\log _{2} B \log _{B} x}=2^{\log _{2} x} \\
& \log _{2} B \log _{B} X=\log _{2} X \\
& \log _{B} X=\frac{\log _{2} X}{\log _{2} B}
\end{aligned}
$$

Algorithm Analysis Examples

- Consider the following program segment:
$\mathrm{x}:=0$;
for $i=1$ to N do
for $j=1$ to i do $\mathrm{x}:=\mathrm{x}+1$;
- What is the value of x at the end?

Arithmetic Sequences

$\mathrm{N}=\{0,1,2, \ldots\}=$ natural numbers
$[0,1,2, \ldots]$ is an infinite arithmetic sequence
$[a, a+d, a+2 d, a+3 d, \ldots]$ is a general infinite arith. sequence.
There is a constant difference between terms.

$$
1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

Analyzing the Loop

- Total number of times x is incremented is executed $=$

$$
1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You've just analyzed your first program!
- Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
- Big-O ??

04/01/09

Comparing Two Algorithms

What we want	
- Rough Estimate	
- Ignores Details	

Big-O Analysis - Ignores "details"	

Analysis of Algorithms

- Efficiency measure
- how long the program runs time complexity
- how much memory it uses space complexity
- For today, we'll focus on time complexity only
- Why analyze at all?

04/01/09

Why Asymptotic Analysis?

- Most algorithms are fast for small n
- Time difference too small to be noticeable
- External things dominate (OS, disk I/O, ...)
- BUT n is often large in practice
- Databases, internet, graphics, ...
- Time difference really shows up as n grows!

Asymptotic Analysis

- Complexity as a function of input size n
$\mathrm{T}(n)=4 n+5$
$\mathrm{T}(n)=0.5 n \log n-2 n+7$
$\mathrm{T}(n)=2^{n}+n^{3}+3 n$
- What happens as n grows?

