

• Announcements

- Assignment #1 due Thurs, April 9 at 11:45pm
- Email sent to cse373 mailing list did you get it?

2

- Have you installed Eclipse and Java yet?
- Queues and Stacks
- Math Review
 - Proof by Induction
 - Powers of 2
 - Binary numbers
- Exponents and Logs

04/01/09

Background	d Su	rvey Info:
When did yo	ou ta	ke cse143?
• 0 - autumn 08	12	18.46%
• 1 - summer 08	0	0%
 2 - spring 08 	6	9.23%
• 3 - winter 08	10	15.38%
• 4 - autumn 07	4	6.15%
• 5 - summer 07	1	1.54%
• 6 - Before summer 07	8	12.31%
• 7 - I did not take cse 1-	43 at I	UW (AP or transfer
credit)	3	4.62%
• Other:	21	32.31% (winter 09)

Mathematical Induction

Suppose we wish to prove that:

For all $n \ge n_0$, some predicate P(n) is true.

We can do this by proving two things:

- 1. $P(n_0)$ --- this is called the "basis."
- 2. If P(k) then P(k+1) -- this is called the "induction step."

5

04/01/09

Example: Basis StepProve for all $n \ge 1$, sum of first n powers of $2 = 2^n - 1$ $2^0 + 2^1 + 2^2 + \dots + 2^{n-1} = 2^n - 1$.in other words: $1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$.Proof by induction:Basis with $n_0 = 1$:(left hand side) $2^{1-1} = 2^0 = 1$ (right hand side) $2^{1-1} = 2^0 = 1$ So true for $n_0 = 1$

