

Today's Outline

- Announcements
- Assignment \#1 due Thurs, April 9 at 11:45pm
- Asymptotic Analysis

Exercise

2	3	5	16	37	50	73	75	126

bool ArrayFind(int array[], int n, int key) \{ // Insert your algorithm here

What algorithm would you choose
to implement this code snippet?
\} 4/06/09

Analyzing Code

Basic Java operations	Constant time
Consecutive statements	Sum of times
Conditionals	Larger branch plus test
Loops	Sum of iterations
Function calls	Cost of function body
Recursive functions	Solve recurrence relation

Linear Search Analysis

int n,
int key) \{
for (int $i=0$; $i<n$; i++) \{ if(array[i] == key)
// Found it!
return true;
\}
return false;
\}

Best Case:
Worst Case
Worst Case

Binary Search Analysis

bool BinArrayFind(int array[], int low, int high, int key) f
// The subarray is empty
if(low > high) return false;
// Search this subarray recursively
int mid $=($ high + low) / 2; if(key == array [mid]) \{
return true;
\} else if (key < array[mid]) \{
return BinArrayFind (array, low,
\} else \{
return BinArrayFind(array, mid+1, high, key);
\}
4/06/09
\qquad high, key)

6

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case
$4 / 0609$
7

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 2)

Linear Search vs Binary Search

	Linear Search	Binary Search
Best Case		
Worst Case		

So ... which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Smart Programmer (round 1)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=3 n+2 \in \Theta(n)$
- Binary search is $\mathrm{T}(n)=4 \log _{2} n+4 \in \Theta(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime

Asymptotic Analysis

- Eliminate low order terms
$-4 \mathrm{n}+5 \Rightarrow$
$-0.5 \mathrm{n} \log \mathrm{n}+2 \mathrm{n}+7 \Rightarrow$
$-\mathrm{n}^{3}+2^{\mathrm{n}}+3 \mathrm{n} \Rightarrow$
- Eliminate coefficients
$-4 n \Rightarrow$
$-0.5 \mathrm{n} \log \mathrm{n} \Rightarrow$
$-n \log n^{2}=>$

4/06/09

Definition of Order Notation

- Upper bound: $T(n)=O(f(n)) \quad$ Big-O

Exist constants c and n ' such that $T(n) \leq c f(n)$ for all $n \geq n$,

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega Exist constants c and n ' such that $T(n) \geq c g(n)$ for all $n \geq n$,
- Tight bound: $T(n)=\Theta(f(n)) \quad$ Theta When both hold:
$T(n)=O(f(n))$
$T(n)=\Omega(f(n))$
4/06/09
15

Notation Notes

Note: Sometimes, you'll see the notation:

$$
\mathrm{g}(n)=\mathrm{O}(\mathrm{f}(n))
$$

This is equivalent to:

$$
\mathrm{g}(n) \text { is } \mathrm{O}(\mathrm{f}(n))
$$

However: The notation

$$
\mathrm{O}(\mathrm{f}(n))=\mathrm{g}(n) \quad \text { is meaningless! }
$$

(in other words big-O "equality" is not symmetric)

4/06/09 17

Order Notation: Intuition

Although not yet apparent, as n gets "sufficiently 4006arge", $\mathrm{f}(n)$ will be "greater than or equal to" $\mathrm{g}(n)_{14}$

Order Notation: Definition

$\mathbf{O}(\mathbf{f}(n))$: a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff there exist consts c and n_{0} such that: $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$

Example: $\mathrm{g}(n)=1000 n$ vs. $\mathrm{f}(n)=n^{2}$
Is $g(n) \in \mathrm{O}(\mathrm{f}(n))$?
Pick: $\mathrm{n} 0=1000, \mathrm{c}=1$

4/06/09

Meet the Family

- $\mathrm{O}(\mathrm{f}(n))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(n)$
- $\mathrm{o}(\mathrm{f}(n))$ is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- $\Omega(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $\mathrm{f}(n)$
- $\omega(\mathrm{f}(n)$) is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- $\Theta(\mathrm{f}(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$

Meet the Family, Formally

- $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff

There exist c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$
$-\mathrm{g}(n) \in \mathrm{o}(\mathrm{f}(n))$ iff
There exists a n_{0} such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all c and $n \geq n_{0}$

- $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$ iff \quad Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=0$

There exist $c>0$ and n_{0} such that $\mathrm{g}(n) \geq c \mathrm{f}(n)$ for all $n \geq n_{0}$
$-\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff
There exists a n_{0} such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all c and $n \geq n_{0}$

- $\mathrm{g}(n) \in \Theta(\mathrm{f}(n))$ iff
$\mathrm{g}(n) \in \Theta(\mathrm{f}(n))$ Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=\infty$
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$,

4/06/09
21

Pros and Cons of Asymptotic Analysis

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
Θ	$=$
o	$<$
ω	$>$

Types of Analysis

Two orthogonal axes:

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (Θ)
- analysis case
- worst case (adversary)
- average case
- best case
- "amortized"

Which Function Grows Faster?
$n^{3}+2 n^{2}$ vs. $100 n^{2}+1000$

Which Function Grows Faster?
$\mathrm{n}^{0.1}$
vs. $\log n$

4/06/09 27

Which Function Grows Faster?
$5 n^{5}$
vs.
$n!$

406
29

Which Function Grows Faster?
$\mathrm{n}^{3}+2 \mathrm{n}^{2} \quad$ vs. $100 \mathrm{n}^{2}+1000$

$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log (n)\right)$

- Eliminate low order terms
- Eliminate constant coefficients
$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log (n)\right)$
- Eliminate low $16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}$ order terms $\quad \Rightarrow 16 n^{3} \log _{8}\left(10 n^{2}\right)$
- Eliminate $\quad \Rightarrow n^{3} \log _{8}\left(10 n^{2}\right)$ constant $\quad \Rightarrow n^{3}\left[\log _{8}(10)+\log _{8}\left(n^{2}\right)\right]$ coefficients $\quad \Rightarrow n^{3} \log _{8}(10)+n^{3} \log _{8}\left(n^{2}\right)$
$\Rightarrow n^{3} \log _{8}\left(n^{2}\right)$
$\Rightarrow n^{3} 2 \log _{8}(n)$

$$
\Rightarrow n^{3} \log _{8}(n)
$$

$$
\Rightarrow n^{3} \log _{8}(2) \log (n)
$$

$\Rightarrow n^{3} \log (n)$

