AVL Trees

CSE 373
Data Structures and Algorithms

The AVL Balance Condition		
Left and right subtrees of every node have equal heights differing by at most 1		
Define: balance $(x)=\operatorname{height}(x$. left $)-\operatorname{height}(x$. right $)$		
AVL property: $\mathbf{- 1} \leq$ balance $(x) \leq 1$, for every node x		
- Ensures small depth - Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\Theta\left(2^{h}\right)$) nodes		
- Easy to maintain - Using single and double rotations		
04/20/2009	Binary Search Trees	2

Testing the Balance Property

AVL tree insert

Let x be the node where an imbalance occurs.
Four cases to consider. The insertion is in the

1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases $1 \& 4$ are solved by a single rotation.
Cases $2 \& 3$ are solved by a double rotation.

04/20/2009

Bad Case \#1

Insert(6)
Insert(3)
Insert(1)

AVL trees: find, insert

- AVL find:
- same as BST find.
- AVL insert:
- same as BST insert, except may need to "fix" the AVL tree after inserting new value.

Single rotation in general

Height of tree before? Height of tree after? Effect on Ancestors? 04/20/2009 Binary Search Trees 12

Fix: Apply Double Rotation

Double Rotation

1. Rotate between x 's child and grandchild
2. Rotate between x and x 's new child

04/20/2009 Binary Search Tre

15

Imbalance at node X		
Single Rotation 1. Rotate between x and child		
Double Rotation 1. Rotate between x 's child and grandchild 2. Rotate between x and x 's new child		
${ }_{047202009} \quad$ Binary Search Trees		

Single and Double Rotations:		
Inserting what integer values		
would cause the tree to need a:		
1. single rotation?		
2. double rotation?		
3. no rotation?		
Student Activity		

Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
case \#1: Perform single rotation and exit

- case \#2: Perform double rotation and exit
-
- Both rotations keep the subtree height unchanged Hence only one rotation is sufficient!
04/20/2009 Binary Search Trees 22

Hard Insert (Bad Case \#1)

Insert(33)

Unbalanced?
How to fix?

