

Today's Outline

- Announcements
- Assignment \#3 due Thurs, May $7^{\text {th }}$.
- Today's Topics:

- Priority Queues

- Binary Min Heap - buildheap
- D-Heaps
- Leftist Heaps

Facts about Binary Min Heaps

Observations:

- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- each percolate step looks at only two new nodes
- inserts are at least as common as deleteMins

Realities:

- division/multiplication by powers of two are equally fast
- looking at only two new pieces of data: bad for cache!
- with huge data sets, disk accesses dominate 5/01/2009

A Solution: d-Heaps

- Each node has d children
- Still representable by array
- Good choices for d :
- (choose a power of two

for efficiency)
 cache line
- fit one set of children on a $\min _{5012009}{ }^{\text {mery }}$ page/disk block 55012009

Operations on d-Heap

- Insert : runtime =
- deleteMin: runtime =

One More Operation

- Merge two heaps. Ideas?

Leftist Heaps

Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:

1. Most nodes are on the left
2. All the merging work is done on the right

5/01/2009 11

New Operation: Merge

Given two heaps, merge them into one heap

- first attempt: insert each element of the smaller heap into the larger.
runtime:
- second attempt: concatenate binary heaps, arrays and run buildHeap. runtime:

Definition: Null Path Length

null path length ($n \mathrm{npl}$) of a node $x=$ the number of nodes between x and a null in its subtree

OR
$\mathrm{npl}(\mathrm{x})=\min$ distance to a descendant with 0 or 1 children

- $n p l($ null $)=-1$
- $n p l($ leaf, aka zero children $)=0$
- $n p l($ node with one child $)=0$

Equivalent definitions:

1. $n p l(x)$ is the height of largest perfect subtree rooted at x
2. $n p l(x)=1+\min \{n p l(\operatorname{left}(\mathrm{x})), n p l(\operatorname{right}(\mathrm{x}))\}$ 5/01/2009

Leftist Heap Properties

- Heap-order property
- parent's priority value is \leq to childrens' priority values
- result: minimum element is at the root
- Leftist property
- For every node $x, n p l(\operatorname{left}(x)) \geq n p l(\operatorname{right}(x))$
- result: tree is at least as "heavy" on the left as the right

Are leftist trees...
complete?
5/01/2009
balanced?

Right Path in a Leftist Tree is Short (\#2)

Claim: If the right path has \mathbf{r} nodes, then the tree has at least
$2^{x}-1$ nodes.
Proof: (By induction)
Base case : $\mathbf{r}=\mathbf{1}$. Tree has at least $\mathbf{2}^{\mathbf{1}} \mathbf{- 1}=\mathbf{1}$ node
Inductive step : assume true for $\boldsymbol{r}^{\prime}<\boldsymbol{r}$. Prove for tree with right path at least \mathbf{r}.

1. Right subtree: right path of $\mathbf{r} \mathbf{- 1}$ nodes
$\Rightarrow \mathbf{2}^{\mathrm{r}-1}-1$ right subtree nodes (by induction)
2. Left subtree: also right path of length at least $\mathbf{r}-1$ (by previous
slide) $\quad \Rightarrow 2^{\mathrm{r}-1}-1$ left subtree nodes (by induction)
Total tree size: $\left(2^{x-1}-1\right)+\left(2^{x-1}-1\right)+1=2^{x}-1$

Why do we have the leftist property?

Because it guarantees that:

- the right path is really short compared to the number of nodes in the tree
- A leftist tree of N nodes, has a right path of at most $\log (\mathbf{N}+1)$ nodes

Idea - perform all work on the right path 5/01/2009 17

Merge two heaps (basic idea)

- Put the smaller root as the new root,
- Hang its left subtree on the left.
- Recursively merge its right subtree and the other tree.

Other Heap Operations

- insert?
- deleteMin ?

Leftist Heaps: Summary

Good
-
-
$\underline{B a d}$
-
-
5/01/2009
27

Skew Heaps

Problems with leftist heaps

- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is "often" heavy and requires a switch

Solution: skew heaps

- "blindly" adjusting version of leftist heaps
- merge always switches children when fixing right path
- $\underline{\text { amortized time for: merge, insert, deleteMin }=\mathrm{O}(\log n), ~(1) ~}$
- however, worst case time for all three $=\mathrm{O}(n)$

5/01/2009
29

Operations on Leftist Heaps

- merge with two trees of total size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- insert with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- pretend node is a size 1 leftist heap
- insert by merging original heap with one node heap

$$
\triangle \bigcirc \xrightarrow{\text { merge }} \wedge
$$

- deleteMin with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- remove and return root
- merge left and right subtrees

Amortized Time

am•or•tized time

Running time limit resulting from "writing off" expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $\mathrm{O}(\mathrm{M} \log \mathrm{N})$ time, amortized time per operation is $\mathrm{O}(\log \mathrm{N})$

Difference from average time:

Runtime Analysis:
 Worst-case and Amortized

- No worst case guarantee on right path length!
- All operations rely on merge
\Rightarrow worst case complexity of all ops =
- Amortized Analysis (Chapter 11)
- Result: M merges take time $M \log n$
\Rightarrow amortized complexity of all ops $=$

\left.| Comparing Priority Queues | |
| :--- | :--- |
| • Binary Heaps | • Leftist Heaps |$\right]$

