Disjoint Sets and Dynamic
 Equivalence Relations

CSE 373
Data Structures and Algorithms

Motivation

Some kinds of data analysis require keeping track of transitive relations.
Equivalence relations are one family of transitive relations.
Grouping pixels of an image into colored regions is one form of data analysis that uses "dynamic equivalence relations".
Creating mazes without cycles is another application.
Later we'll learn about "minimum spanning trees" for networks, and how the dynamic equivalence relations help out in computing spanning trees.

Equivalence Relations

- A binary relation R on a set S is an equivalence relation provided it is reflexive, symmetric, and transitive:
- Reflexive - R (a, a) for all a in S.
- Symmetric - $\mathrm{R}(\mathrm{a}, \mathrm{b}) \rightarrow \mathrm{R}(\mathrm{b}, \mathrm{a})$
- Transitive - $\mathrm{R}(\mathrm{a}, \mathrm{b}) \wedge \mathrm{R}(\mathrm{b}, \mathrm{c}) \rightarrow \mathrm{R}(\mathrm{a}, \mathrm{c})$

Is \leq an equivalence relation on integers?
Is "is connected by roads" an equivalence relation on cities?

5

Today's Outline

- Announcements
- Assignment \#4 coming soon.
- Midterm \#2, Wed May $20^{\text {th }}$
- Today's Topics:
- Disjoint Sets \& Dynamic Equivalence

Disjoint Sets

- Two sets S_{1} and S_{2} are disjoint if and only if they have no elements in common.
- S_{1} and S_{2} are disjoint iff $S_{1} \cap S_{2}=\varnothing$
(the intersection of the two sets is the empty set)

For example $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\{\mathrm{d}, \mathrm{e}\}$ are disjoint.

But $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\{\mathrm{t}, \mathrm{u}, \mathrm{x}\}$ are not disjoint.

5/08/09

$$
4
$$

Induced Equivalence Relations

- Let S be a set, and let P be a partition of S .
$P=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$
P being a partition of S means that:
$\mathrm{i} \neq \mathrm{j} \rightarrow \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$ and
$S_{1} \cup S_{2} \cup \ldots \cup S_{k}=S$
- P induces an equivalence relation R on S :
$R(a, b)$ provided a and b are in the same subset (same element of P).

So given any partition P of a set S, there is a corresponding equivalence relation R on S.

5/08/09
${ }^{6}$

Example

- $S=\{a, b, c, d, e\}$
$P=\left\{S_{1}, S_{2}, S_{3}\right\}$
$S_{1}=\{a, b, c\}, S_{2}=\{d\}, S_{3}=\{e\}$
P being a partition of S means that:
$\mathrm{i} \neq \mathrm{j} \rightarrow \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$ and
$\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{k}}=\mathrm{S}$
- P induces an equivalence relation R on S :
$R=\{(a, a),(b, b),(c, c),(a, b),(b, a),(a, c),(c, a)$, (b,c), (c,b),
(d,d),
(e,e) \}
5/08/09

Example

- Maintain a set of pairwise disjoint* sets.
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name: one of its members $-\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$
*Pairwise Disjoint: For any two sets you pick, their intersection will be empty)

Find

- Find (x) - return the name of the set containing x.
$-\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
$-\operatorname{Find}(1)=5$
$-\operatorname{Find}(4)=8$

Introducing the UNION-FIND ADT

- Also known as the Disjoint Sets ADT or the Dynamic Equivalence ADT.
- There will be a set S of elements that does not change.
- We will start with a partition P_{0}, but we will modify it over time by combining sets.
- The combining operation is called "UNION"
- Determining which set (of the current partition) an element of S belongs to is called the "FIND" operation.

Union

- Union(x, y) - take the union of two sets named x and y
$-\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$
- Union(5,1)
$\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,

To perform the union operation, we replace sets x and y by $(x \cup y)$

Application: Building Mazes

- Build a random maze by erasing edges.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- Only one path from any one cell to another (There are no cycles - no cell can reach itself by a path unless it retraces some part of the path.)

Number the Cells

We have disjoint sets $P=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$ each cell is unto itself. We have all possible edges $E=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ edges total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

5/08/09

Basic Algorithm

- $\mathrm{P}=$ set of sets of connected cells
- $E=$ set of edges
- Maze $=$ set of maze edges (initially empty)

While there is more than one set in P \{
pick a random edge (x, y) and remove from E
$\mathrm{u}:=\operatorname{Find}(\mathrm{x})$;
$\mathrm{v}:=$ Find (y);
if $u \neq v$ then // removing edge (x, y) connects previously non// connected cells x and y-leave this edge removed!
Union(u,v)
else $\quad / /$ cells x and y were already connected, add this
// edge to set of edges that will make up final maze. add (x, y) to Maze
\}
All remaining members of E together with Maze form the maze

Example at the End

P
$\{1,2,3,4,5,6, \underline{7}, \ldots 36\}$

$$
\begin{aligned}
& \text { Start } \\
& \begin{array}{|ccc|c|ccc|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24 \\
\hline 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & \text { En }
\end{array}
\end{aligned}
$$

5/08/09
24

Implementing the Disjoint Sets ADT

- n elements,

Total Cost of: m finds, $\leq n-1$ unions

- Target complexity: $O(m+n)$ i.e. $O(1)$ amortized
- $O(1)$ worst-case for find as well as union would be great, but...
Known result: both find and union cannot be done in worst-case $O(1)$ time

5/08/09

Up-Tree for Disjoint Union/Find
Initial state: (1)

After several Unions:

(2)

Roots are the names of each set
(3)

Union Operation

$\operatorname{Union}(\mathrm{x}, \mathrm{y})-\operatorname{assuming} \mathrm{x}$ and y are roots, point y to x .

Simple Implementation

- Array of indices 29

5/08/09
(09

Implementation

runtime for Union():
runtime for Find():
runtime for m Finds and n-1 Unions:

Find Solutions

Recursive

Find (up [] : integer array, x : integer) : integer \{ //precondition: x is in the range 1 to size//
if $u p[x]=0$ then return x
lse return Find (up, up[x]);
\}

Iterative

Find (up [] : integer array, x : integer) : integer $\{$ //precondition: x is in the range 1 to size//
while up $[x] \neq 0$ do
$\mathrm{x}:=\mathrm{up}[\mathrm{x}]$;
return x;
\}
5/08/09
Now this doesn't look good ${ }^{\circ}$ Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$

- Union-by-size
- Reduces complexity to $\Theta(m \log n+n)$

2. Improve find so that it becomes even better!

- Path compression
- Reduces complexity to almost $\Theta(m+n)$

Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^{h}.

- Proof by induction
- Basis: $\mathrm{h}=0$. The up-tree has one node, $2^{0}=1$
- Inductive step: Assume true for all h' < h.

5/08/09
(1) (2) (3) \cdots (n)

W-Union(2,1)

35

Example Again

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

$$
\begin{gathered}
\mathrm{n} \geq 2^{\mathrm{h}} \\
\log _{2} \mathrm{n} \geq \mathrm{h}
\end{gathered}
$$

- Find (x) in tree T takes $\mathrm{O}(\log \mathrm{n})$ time.
- Can we do better?

Example of Worst Case (cont')

If there are $n=2^{k}$ nodes then the longest path from leaf to root has length k .

5/08/09

Weighted Union

W-Union (i,j : index) \{
//i and j are roots new runtime for Union():
wi := weight[i];
wj := weight[j];
if wi < wj then up[i] := j; weight[j] := wi + wj;
else up [j] :=i; weight[i] := wi +wj;
\}
runtime for m finds and $n-1$ unions $=$
5/08/09
41

Array Implementation

5/08/09

Union-by-size: Find Analysis

- Complexity of Find: O(max node depth)
- All nodes start at depth 0
- Node depth increases:
- Only when it is part of smaller tree in a union
- Only by one level at a time

Result: tree size doubles when node depth increases by 1
Find runtime $=\mathrm{O}($ node depth $)=$
runtime for m finds and n - 1 unions $=$

Nifty Storage Trick

- Use the same array representation as before
- Instead of storing - $\mathbf{1}$ for the root, simply store -size
[Read section 8.4, page 299]

5/08/09

Path Compression

- On a Find operation point all the nodes on the search path directly to the root. directly to the root

45

A More Comprehensible Slow Function

```
log*x = number of times you need to compute
            log}\mathrm{ to bring value down to at most 1
```



```
    log*4= log* 2'=2
    log*16= 少* 2}\mp@subsup{2}{}{2}=3\quad(\operatorname{log}\operatorname{log}\operatorname{log}16=1
    log* 65536 = log* 2 222 = 4 (log log log log 65536=1)
    log* 2'65536}=\ldots\ldots\ldots\ldots\ldots..=
Take this: \(\alpha(m, n)\) grows even slower than \(\log ^{*} n!!\)
5/08/09

\section*{Disjoint Union / Find} with Weighted Union and PC
- Worst case time complexity for a W-Union is \(\mathrm{O}(1)\) and for a PC-Find is \(\mathrm{O}(\log n)\).
- Time complexity for \(\mathrm{m} \geq \mathrm{n}\) operations on n elements is \(\mathrm{O}(\mathrm{m} \log * \mathrm{n})\) where \(\log ^{*} \mathrm{n}\) is a very slow growing function.
- Log * \(\mathrm{n}<7\) for all reasonable n . Essentially constant time per operation!

For all practical purposes this is amortized constant time:
\(\mathrm{O}(p \cdot 4)\) for \(p\) operations!
- Very complex analysis - worse than splay tree analysis etc. that we skipped!

5/08/09 53

\section*{Amortized Complexity}
- For disjoint union / find with weighted union and path compression.
- average time per operation is essentially a constant. - worst case time for a PC-Find is \(\mathrm{O}(\log n)\).
- An individual operation can be costly, but over time the average cost per operation is not.```

