
1

Graphs:
More on Shortest Paths, Plus
Minimum Spanning Trees

CSE 373

Data Structures and Algorithms

5/27/09 2

Today’s Outline
• Announcements

– Homework #5 – due Thurs June 4

• Graphs
– Shortest Paths Algorithms
– Minimum Spanning Tree

5/27/09 3

The Known

Cloud

V

Next shortest path from
inside the known cloud

W

Better path
to V? No!

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to Wmust be at least as long

(or else we would have picked Was the next vertex)
• So the path through Wto V cannot be any shorter!

Source

5/27/09 4

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct shortest
path

Inductive step: Only when we prove the shortest path to
some node v (which is not in the cloud) is correct, we add
it to the cloud

When does Dijkstra’s algorithm not work?

5/27/09 5

Dijkstra’s vs BFS
At each step:

1) Pick closest unknown vertex

2) Add it to finished vertices

3) Update distances

Dijkstra’s Algorithm

At each step:
1) Pick vertex from queue

2) Add it to visited vertices

3) Update queue with neighbors

Breadth-first Search

Some Similarities:

5/27/09 6

The Trouble with
Negative Weight Cycles

A B

C D

E

2
10

1-5

2

What’s the shortest path from A to E?

Problem?

2

5/27/09 7

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a graph

G’=(V, E’) such that:
– E’ is a subset of E

– |E’ | = |V| - 1

– G’ is connected

– is minimal

Applications: wiring a house, power grids, Internet
connections

∑
∈ '),(

c
Evu

uv

G’ is a minimum
spanning tree.

5/27/09 8

Find the MST
4

7

1
5

9

2

Student Activity

A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

5/27/09 9

Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

5/27/09 10

Prim’s algorithm
Idea: Grow a tree by adding an edge from the

“known” vertices to the “unknown” vertices. Pick
the edge with the smallest weight.

G

v

known

5/27/09 11

Prim’s Algorithm for MST
A node-based greedy algorithm

Builds MST by greedily adding nodes

1. Select a node to be the “root”
• mark it as known
• Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest costfrom some known

node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

5/27/09 12

Find MST using
Prim’s v4

v7

v2

v3 v5

v6

v1

Start with V 1

2

2

5

4
7

1 10

4 6

3

8

1

v1

v7

v6

v5

v4

v3

v2

pathDistanceKwnV

Student Activity

Order Declared Known:
V1

3

5/27/09 13

Prim’s Algorithm Analysis
Running time:

Same as Dijkstra’s: O(|E| log |V|)

Correctness:

Proof is similar to Dijkstra’s

5/27/09 14

Kruskal’s MST Algorithm
Idea: Grow a forestout of edges that do not create a

cycle. Pick an edge with the smallest weight.

G=(V,E)

v

5/27/09 15

Kruskal’s Algorithm for MST
An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge(u,v) and mark it

b. If u and v are not already connected, add (u,v) to the MST and
mark u and v as connected to each other

Doesn’t it sound familiar?

5/27/09 16

Kruskal code
void Graph::kruskal(){

int edgesAccepted = 0;

DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);

vset = s.find(v);

if (uset != vset){

edgesAccepted++;

s.unionSets(uset, vset);

}

}

}

2|E| finds

|V| unions

|E| heap ops

5/27/09 17

Find MST using Kruskal’s

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Student Activity

Total Cost:

• Now find the MST using Prim’s method.
• Under what conditions will these methods give the same result?

