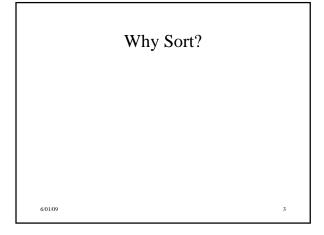
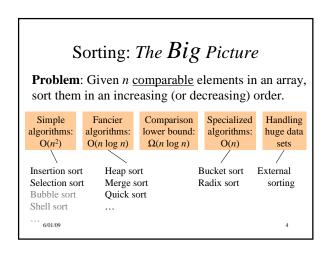
Sorting Chapter 7 in Weiss

Today's Outline • Announcements - HW #5 • Assignment due Thurs June 4th. • Sorting





At the kth step, put the kth input element in the correct place among the first k elements Result: After the kth step, the first k elements are sorted.

Insertion Sort: Idea

Runtime:

worst case :
best case :
average case :

6/01/09

Selection Sort: Idea

- Find the smallest element, put it 1st
- Find the next smallest element, put it 2nd
- Find the next smallest, put it 3rd
- And so on ...

6/01/09

```
Mystery(int array a[]) {
  for (int p = 1; p < length; p++) {
    int tmp = a[p];
    for (int j = p; j > 0 && tmp < a[j-1]; j--)
        a[j] = a[j-1];
    a[j] = tmp;
  }
}
What sort is this?

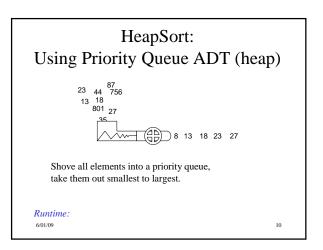
What is its
running time?
Best?
Avg?
Worst?</pre>
```

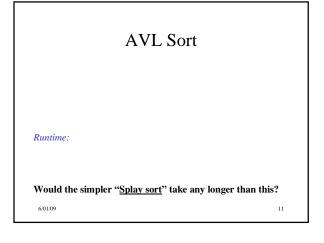
```
Selection Sort: Code

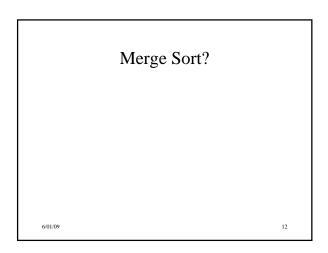
void SelectionSort (Array a[0..n-1]) {
    for (i=0, i<n; ++i) {
        j = Find index of smallest entry in a[i..n-1]
        Swap(a[i],a[j])
    }
}

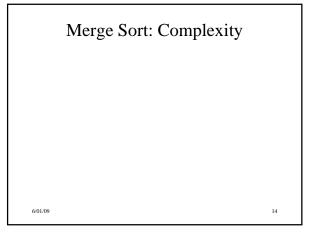
Runtime:
    worst case :
    best case :
    best case :
    average case : 8
```

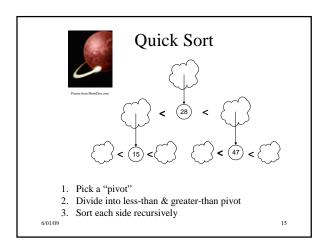
Sorts using other data structures: How? Runtime? AVL Sort? Heap Sort? Splay Sort? 601.09 9

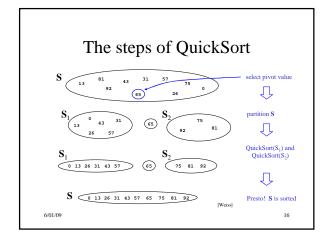


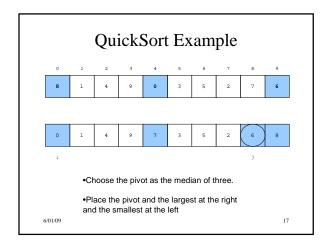


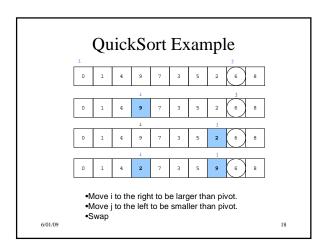


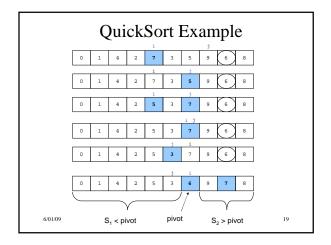












Quicksort(A[]: integer array, left,right : integer): { pivotindex : integer; if left + CUTOFF ≤ right then pivot := median3(A,left,right); pivotindex := Partition(A,left,right-1,pivot); Quicksort(A, left, pivotindex - 1); Quicksort(A, pivotindex + 1, right); else Insertionsort(A,left,right); } Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

Student Activity

Recurrence Relations

Write the recurrence relation for QuickSort:

- Best Case:
- · Worst Case:

6/01/09

QuickSort: Best case complexity

6/01/09

21

23

22

QuickSort: Worst case complexity

6/01/09

QuickSort: Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof. Don't need to know proof details for this course.

6/01/09 24

Features of Sorting Algorithms

- In-place
 - Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)
- Stable
 - Items in input with the same value end up in the same order as when they began.

6/01/09 25

Student Activity	ort Pr	operti	es		
Are the following:	stab	le?	in-place?		
Insertion Sort?	No	Yes	No	Yes	
Selection Sort?	No	Yes	No	Yes	
Heap Sort?	No	Yes	No	Yes	
MergeSort?	No	Yes	No	Yes	
QuickSort?	No	Yes	No	Yes	
6/01/09				26	

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- Can we do any better?
- No, if the basic action is a comparison.

6/01/09

Sorting Model

- Recall our basic assumption: we can <u>only compare</u> two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
 - Assume no duplicates
- · How many possible orderings can you get?
 - Example: a, b, c (N = 3)

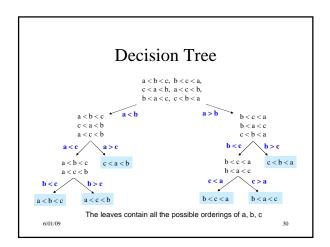
6/01/09 28

Permutations

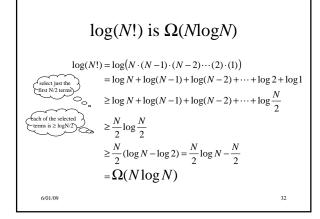
- How many possible orderings can you get?
 - **Example**: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - 6 orderings = 3.2.1 = 3! (ie, "3 factorial")
 - All the possible permutations of a set of 3 elements
- · For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $-N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

6/01/09

29



Lower bound on Height A binary tree of height h has at most how many leaves? L A binary tree with L leaves has height at least: h The decision tree has how many leaves: So the decision tree has height: h_{koldy}



$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is $\Omega(N \log N)$
- Can we do better if we don't use comparisons?

6/01/09

BucketSort (aka BinSort, CountingSort)

If all values to be sorted are *known* to be between 1 and *K*, create an array count of size *K*, **increment** counts while traversing the input, and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count	array
1	
2	
3	
4	
5	

Running time to sort n items?

BucketSort Complexity: O(n+K)

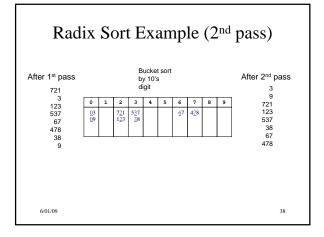
- Case 1: K is a constant
 - BinSort is linear time
- Case 2: *K* is variable
 - Not simply linear time
- Case 3: *K* is constant but large (e.g. 2³²) ???

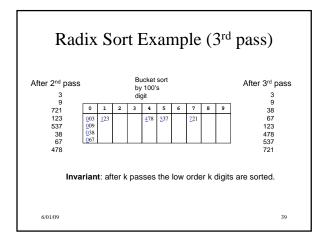
6/01/09

Fixing impracticality: RadixSort

- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>: BucketSort on each **digit**, least significant to most significant (lsd to msd)

6/01/09 36





ucketSo	rt on lsd	•	Inpu		xSo 328,		41, 41	6, 13	1, 328
0	1	2	3	4	5	6	7	8	9
BucketSo	rt on nex	ct-highe	r digit:						
0	ort on nex	xt-higher	r digit:	4	5	6	7	8	9
0		2		4	5	6	7	8	9

Radixsort: Complexity

- · How many passes?
- How much work per pass?
- Total time?
- · Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values. Why?
- Hard on the cache compared to MergeSort/QuickSort 41

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting Basic Idea:
 - Load chunk of data into RAM, sort, store this "run" on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples in section 7.10

6/01/09 42