Extra AVL Tree Slides

[ Insert into Z, increasing height]

General Single Rotation

h+1

« Height of subtree same as it was before insert!
« Height of all ancestors unchanged.

2

General Double Rotation

h+2

T \\\h -1 h

h-1

VAN

[ X,Y:oneis h-1, one is h-%
* Height of subtreatill the same as it was before
insert!

« Height of all ancestors unchanged. s

Height of an AVL tree

Theorem:Any AVL tree withn nodes has heigh
less than 1.441 log.

Proof:Given ann-node AVL tree, we want to
find an upper bound on the height of the treq.
Fix h. What is the smallestsuch that there is
an AVL tree of heighh with n nodes?

Let W, be the set of all AVL trees of height
that have as few nodes as possible.

Let S(h)be the number of nodes in any one of
these trees.
S(0) =1, S(1) =2 - .
Suppose TI W,, where h= 2. LetT, andTgbe
T's left and right subtrees. Since T has helght
either T_ or T has heighh-1. Suppose it's .
By definition, both T and T; are AVL trees. In
fact, T, O W, _, or else it could be replaced by a|
smaller AVL tree of heightt-1 to give an AVL
tree of heighti that is smaller than T.

Similarly, T, OW, .
Therefore, S(h) =1 + S(h-2) + S(h-1).

Note: from
Claim: For h= 0, S(h)= ¢", Fibonacci #s,

where$ = (1 +V5) / 2= 1.6. Golden Ratio
Proof: The proof is by induction oh.
Basis step: h=0. S(0) = 1 =°.
h=1. S(1) =2 .
Induction step: Suppose the claim is true for
0<m<h, whereh= 1.




Then:
S(h+1) =1 + S(h-1) + S(h)
=1+ +¢h (by the i.h.)
=1+¢"(1+¢)  (by math)
=1+ (using 14 = ¢?)

> ph+t Thus, the claim is true.
From the claim, in an-node AVL tree of height,

n=S(h)= ¢" (from the Claim)

h<log,n (by math — log, of both sides)
= (logn) / (log ¢)
<1.441 logn 7

AVL tree: Running times

« find takes O(logn) time, because height of
the tree is always O(log).

« insert O(logn) time because we do a find
(O(log n) time), and then we may have to
visit every node on the path back to the
root, performing up to 2 single rotations
(O(1) time each) to fix the tree.

* remove O(logn) time. Left as an exercise.

8

AVL Insert Algorithm

* Recursive * lterative
1. Search downward for 1. Search downward for
spot spot, stacking

parent nodes

2. Insert node

3. Unwind stack,
correcting heights

2. Insert node
3. Unwind stack,
correcting heights

.1 f i nbal #1, )
a ' mbatance a. |f inmbalance #1,

single rotate .
S single rotate and
b. If inbalance #2, exit

doubl e rotate b. If inmbalance #2,
doubl e rotate and
exit

Why use a stack?

{ RotateRight brings up the right chi]d

Single Rotation Cod

voi d Rotat eRi ght (Node root) {

Node tenp = root.right
root.right = tenp.left
tenmp.left = root
root. hei ght = max(root.right. height(),

root.left.height()) + 1
tenp. hei ght = mex(tenp.right. hei ght(),

temp.left.height()) + 1
root = tenp

10

Double Rotation Code

voi d Doubl eRot at eRi ght (Node root) {
Rot at eLeft (root.right)
Rot at eRi ght (r oot)

First Rotation

Double Rotation Completed

Second Rotation

12




