
Asymptotic Analysis

CSE 373
Data Structures & Algorithms

Ruth Anderson
Autumn 2010

Today’s Outline
• Announcements

– Assignment #1 due Thurs, Oct 7 at 11:45pm

• Asymptotic Analysis

Exercise

bool ArrayFind(int array[], int n, int key){

// Insert your algorithm here

}

2 3 5 16 37 50 73 75 126

What algorithm would you choose
to implement this code snippet?

Analyzing Code

Basic Java operations
Consecutive statements

Conditionals

Loops
Function calls

Recursive functions

Constant time

Sum of times

Larger branch plus test

Sum of iterations

Cost of function body

Solve recurrence relation

Analyze your code!

Linear Search Analysis
bool LinearArrayFind(int array[],

int n,

int key) {

for(int i = 0; i < n; i++) {
if(array[i] == key)

// Found it!

return true;

}

return false;

}

Best Case:

Worst Case:

Binary Search Analysis
bool BinArrayFind(int array[], int low,

int high, int key) {

// The subarray is empty
if(low > high) return false;

// Search this subarray recursively
int mid = (high + low) / 2;

if(key == array[mid]) {

return true;

} else if(key < array[mid]) {

return BinArrayFind(array, low,

mid-1, key);

} else {

return BinArrayFind(array, mid+1,

high, key);

}

Best case:

Worst case:

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansionsto a value which reduces the problem to a base case

Linear Search vs Binary Search

So … which algorithm is better?
What tradeoffs can you make?

Fast Computer vs. Slow Computer Fast Computer vs. Smart Programmer
(round 1)

Fast Computer vs. Smart Programmer
(round 2) Asymptotic Analysis

• Asymptotic analysis looks at the orderof the
running time of the algorithm
– A valuable tool when the input gets “large”
– Ignores the effects of different machinesor different

implementationsof the same algorithm

• Intuitively, to find the asymptotic runtime, throw
away the constants and low-order terms
– Linear search is T(n) = 3n + 3 ∈∈∈∈ Θ(n)
– Binary search is T(n) = 5 log2n + 7 ∈∈∈∈ Θ(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime

Asymptotic Analysis
• Eliminate low order terms

– 4n + 5 ⇒

– 0.5 n log n + 2n + 7 ⇒

– n3 + 2n + 3n ⇒

• Eliminate coefficients
– 4n ⇒

– 0.5 n log n ⇒

– n log n2 =>

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently
large”, f(n) will be “greater than or equal to”g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

Definition of Order Notation
• Upper bound:T(n) = O(f(n)) Big-O

Exist constants c and n’ such that

T(n) ≤ c f(n) for all n ≥ n’

• Lower bound:T(n) = Ω(g(n)) Omega
Exist constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n) = Θ(f(n)) Theta
When both hold:

T(n) = O(f(n))

T(n) = Ω(f(n))

Order Notation: Definition
O(f(n)) : a set or class of functions

g(n) ∈ O(f(n)) iff there exist constsc and n0 such that:

g(n) ≤ c f(n) for all n ≥ n0

Example: g(n) =1000n vs. f(n) = n2

Is g(n) ∈ O(f(n)) ?
Pick: n0 = 1000, c = 1

Notation Notes
Note: Sometimes, you’ll see the notation:

g(n) = O(f(n)).

This is equivalent to:

g(n) is O(f(n)).

However: The notation

O(f(n)) = g(n) is meaningless!

(in other words big-O “equality” is not symmetric)

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19

So g(n) is O(f(n))

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n) (logkn, log n2 is O(log n))

– log-squared: O(log2 n) (log2 n) = (log n)(logn)

– linear: O(n)

– log-linear: O(n log n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

Meet the Family
• O(f(n)) is the set of all functions asymptotically

less than or equalto f(n)
– o(f(n)) is the set of all functions asymptotically

strictly less than f(n)

• Ω(f(n)) is the set of all functions asymptotically
greater than or equalto f(n)
– ω(f(n)) is the set of all functions asymptotically

strictly greater than f(n)

• Θ(f(n)) is the set of all functions asymptotically
equalto f(n)

Meet the Family, Formally
• g(n) ∈ O(f(n)) iff

There exist c and n0 such that g(n) ≤≤≤≤ c f(n) for all n ≥ n0

– g(n) ∈ o(f(n)) iff
There exists a n0 such that g(n) < c f(n) for all c and n ≥ n0

• g(n) ∈ Ω(f(n)) iff
There exist c>0 and n0 such that g(n) ≥≥≥≥ c f(n) for all n ≥ n0

– g(n) ∈ ω(f(n)) iff
There exists a n0 such that g(n) > c f(n) for all c and n ≥ n0

• g(n) ∈ Θ(f(n)) iff
g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n))

Equivalent to: limn→∞ g(n)/f(n) = 0

Equivalent to: limn→∞ g(n)/f(n) = ∞

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics Relation

O ≤
Ω ≥

Θ =

o <

ω >

Pros and Cons of Asymptotic
Analysis

Types of Analysis

Two orthogonalaxes:

– bound flavor
• upper bound (O, o)

• lower bound (Ω, ω)

• asymptotically tight (Θ)

– analysis case
• worst case (adversary)

• average case

• best case

• “amortized”

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

Which Function Grows Faster?

n0.1 log nvs.

Which Function Grows Faster?

n0.1 log nvs.

Which Function Grows Faster?

5n5 n!vs.

Which Function Grows Faster?

5n5 n!vs.

Nested Loops
for i = 1 to n do

for j = 1 to n do

sum = sum + 1

for i = 1 to n do

for j = 1 to n do

sum = sum + 1

Nested Loops
for i = 1 to n do

for j = 1 to n do

if (cond) {

do_stuff(sum)

} else {

for k = 1 to n*n

sum += 1

• Eliminate low
order terms

• Eliminate
constant
coefficients

3 2 2 3
816 log (10) 100 (log())n n n O n n+ =

• Eliminate low
order terms

• Eliminate
constant
coefficients

3 2 2
8

3 2
8

3 2
8

3 2
8 8

3 3 2
8 8

3 2
8

3
8

3
8

3
8

3

16 log (10) 100

16 log (10)

log (10)

log (10) log ()

log (10) log ()

log ()

2 log ()

log ()

log (2) log()

log()

n n n

n n

n n

n n

n n n

n n

n n

n n

n n

n n

+

⇒

⇒

 ⇒ + 

⇒ +

⇒

⇒

⇒

⇒

⇒

3 2 2 3
816 log (10) 100 (log())n n n O n n+ =

