Binary Search Trees

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2010

10/11/10 1

Today’s Outline

* Announcements
— Assignment #2 due Fri, Oct 15, posted

« Today’s Topics:
— Asymptotic Analysis
— Binary Search Trees

10/11/10

Tree Calculations

Recall height is max number
of edges from root to a leaf

Find the height of the tree...

runtime

10/11/10 3

Tree Calculations Example

How high is this tree?

10/11/10

More Recursive Tree Calculations:
Tree Traversals ©

A traversalis an order for OO
visiting all the nodes of a tree
@ ®

Three types: (an expression tree)

* Pre-order Root, left subtree, right subtree
« In-order Left subtree, root, right subtree

« Post-order Left subtree, right subtree, root

10/11/10 5

Traversals

voi d traverse(BNode t){
if (t !'= NULL)
traverse (t.left);
print t.elenment;
traverse (t.right);

}

Which one is this?

10/11/10

Binary Tree

 Binary tree is
— aroot
— left subtremaybe empty)
— right subtreédmaybe empty)

» Representation:

©

Data

left | right
pointer| pointer|

10/11/10

S

()
® ©
®

O Q

~

Binary Tree: Representation

A

left [right
ointepointe 0

B

D E

left |right left [right
ointepointer pointepointe)

10/11/10

Binary Tree: Special Cases

Complete Tree Perfect Tree

10/11/10

Full Tree

ADTs Seen So Far

» Stack
— Push
— Pop

¢ Queue

— Enqueue
— Dequeue

10/11/10 10

ADT

The Dictionary

nanabyte
Danushen Gnanapragasal

* Data: OH: W 3:30pm-4:30pm,
_ asetof CSE 220
i inserthanbyte, ..,
(key, value) pairs panbyte, ..) fang3
Tim Jang,

« Operations:
— Insert (key, value)

~ Find (key) find(jangt13)
— Remove (key) «jangt13
Tim Jang

The Dictionary ADT is sometimes
called the ‘Map ADT”

OH: Tue 2:30-3:30pm
CSE 220

ashen

Amanda Shen

OH: Thu 12-1:30pm
CSE 220

furmac

Chris Furmanczyk
OH: Thu 2:30-3:30
CSE 220

10/11/10

11

A Modest Few Uses

« Sets

* Dictionaries

¢ Networks

¢ Operating systems
« Compilers

: Router tables
: Page tables
: Symbol tables

Probably the most widely used ADT!

10/11/10 12

» Unsorted Linked-list
» Unsorted array

« Sorted array

10/11/10

Implementations

insert find delete

13

Binary Search Tree Data Structurt

« Structural property
— each node has2 children

— result: @
« storage is small

« operations are simple

« average depth is small

« Order property
— all keys in left subtree smaller

than root’s key 9 @
— all keys in right subtree larger
than root's key @

— result: easy to find any given key e a

* What must | know about what | store?

10/11/10 14

\V

10/11/10

15
Activity

Find in BST, Recursive

Node Fi nd(Object key,
Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,
root.left);
else if (key > root.key)
return Find(key,
root.right);

el se
return root;

Node Fi nd(Object key,
Node root) {

while (root !'= NULL &&
root. key != key) {
if (key < root.key)
root = root.left;
el se
root = root.right;

}

return root;

}

10/11/10

Find in BST, lterative

Runtime:

17

}
Runtime:
Insert in BST
Insert(13)
Insert(8)
O Insert(31)
@ @
@ ®
Runtime:
10/11/10 18

BuildTree for BST Bonus: FindMin/FindMax

* Suppose keys 1, 2, 3, 4,5, 6, 7,8, 9 are indénte an
initially empty BST.
Runtime depends on the order!
— in given order

¢ Find minimum

— in reverse order ¢ Find maximum
®@ ©
— median first, then left median, right median, etc. 0 @
10/11/10 19 10/11/10 20
Deletion in BST Lazy Deletion

Instead of physically deleting nodes,
just mark them as deleted

+ simpler
physical deletions done in batches

+

q. + some adds just flip deleted flag
— extra memory for deleted flag
@ — many lazy deletions slow finds
— some operations may have to be
Why might deletion be harder than insertion? modified (e.g., min and max)
10/11/10 21 10/11/10 22
Non-lazy Deletion Non-lazy Deletion — The Leaf Case
* Removing an item disrupts the tree structure.
 Basic ideafind the node that is to be removed.
Delete(L7)

Then “fix” the tree so that it is still a binary seh
tree.
e Three cases:
— node has no children (leaf node)
— node has one child
— node has two children

10/11/10 23 10/11/10 24

Deletion — The One Child Case

Delete(.5) A/@D\

(S
@ @
@

10/11/10 25

Deletion — The Two Child Case

Deletep)

What can we replacewith?

10/11/10 26

Deletion — The Two Child Case

Idea: Replace the deleted node with a value gusedrtb be
between the two child subtrees!

Options:
« succfrom right subtree: findMin(tight)
« predfrom left subtree : findMax(eft)

Now delete the original node containisigccor pred
« Leaf or one child case — easy!

10/11/10 27

Finally...

7 replaces 5 ©

Original node containing
7 gets deleted

10/11/10 28

Balanced BST

Observation

« BST: the shallower the better!

¢ For a BST wittn nodes
— Average height i®(log n)
— Worst case height 3(n)

* Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution Require é8Balance Conditionthat

1. ensures depth &(log n) — strong enough!
2. is easy to maintain - not too strong!

10/11/10 29

Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

2. Left and right subtrees of the root
have equaheight

10/11/10 30

Potential Balance Conditions

3. Left and right subtrees efrery node
have equal number of nodes

4. Left and right subtrees efrery node
have equaheight

10/11/10 31

