CSE 373: Data Structures and Algorithms

Lecture 4: Math Review/Asymptotic Analysis II

Big-Oh notation

- Asymptotic upper bound
- Defn: f(n) = O(g(n)), if there exists positive constants c, n_0 such that: $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- Idea: We are concerned with how the function grows when N is large. We are not concerned with constant factors: coarse distinctions among functions
- Lingo: "f(n) grows no faster than g(n)."

Functions in Algorithm Analysis

- $f(n): \{0, 1, ...\} \rightarrow \Re^+$
 - domain of f is the nonnegative integers
 - range of f is the nonnegative reals

 Unless otherwise indicated, the symbols f, g, h, and T refer to functions with this domain and range.

- We use many functions with other domains and ranges.
 - Example: $f(n) = 5 n \log_2 (n/3)$
 - Although the domain of f is nonnegative integers, the domain of log₂ is all positive reals.

Big-Oh example problems

- n = O(2n)?
- 2n = O(n)?
- $n = O(n^2)$?
- $n^2 = O(n)$?
- n = O(1) ?
- 100 = O(n)?
- $214n + 34 = O(2n^2 + 8n)$?

Preferred big-Oh usage

• pick tightest bound. If f(n) = 5n, then:

ignore constant factors and low order terms

```
f(n) = O(n), not f(n) = O(5n)
f(n) = O(n^3), not f(n) = O(n^3 + n^2 + n \log n)
```

- Wrong: f(n) ≤ O(g(n))
- Wrong: f(n) ≥ O(g(n))

Show f(n) = O(n)

Claim: 2n + 6 = O(n)

Proof: Must find c, n_0 such that for all $n > n_0$,

2n + 6 <= n

Big omega, theta

- **big-Oh Defn**: f(n) = O(g(n)) if there exist positive constants c, n_0 such that: $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- **big-Omega Defn**: $f(n) = \Omega(g(n))$ if there are positive constants c and n_0 such that $f(n) \ge c g(n)$ for all $n \ge n_0$
 - Lingo: "f(n) grows no slower than g(n)."
- **big-Theta Defn**: $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
 - Big-Oh, Omega, and Theta establish a relative ordering among all functions of n

Intuition about the notations

notation	intuition
O (Big-Oh)	$f(n) \leq g(n)$
Ω (Big-Omega)	$f(n) \ge g(n)$
Θ (Theta)	f(n) = g(n)


```
sum = 0;
for (int i = 1; i <= N * N; i++) {
    for (int j = 1; j <= N * N * N; j++) {
        sum++;
    }
}</pre>
```

```
sum = 0;
for (int i = 1; i <= N * N; i++) {
    for (int j = 1; j <= N * N * N; j++) {
        sum++;
    }
}</pre>
N<sup>3</sup>
N<sup>5</sup> + 1
```

So what is the Big-Oh?

Math background: Exponents

- Exponents
 - X^Y, or "X to the Yth power";
 X multiplied by itself Y times
- Some useful identities

$$- X^A X^B = X^{A+B}$$

$$-X^A/X^B=X^{A-B}$$

$$-(X^A)^B = X^{AB}$$

$$- X^{N} + X^{N} = 2X^{N}$$

$$-2^{N}+2^{N}=2^{N+1}$$

```
sum = 0;
for (int i = 1; i <= N; i += c) {
    sum++;
}
</pre>
```

```
sum = 0;
for (int i = 1; i <= N; i += c) {
    sum++;
}</pre>
```

- What is the Big-Oh?
 - Intuition: Adding to the loop counter means that the loop runtime grows linearly when compared to its maximum value n.

```
sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}
</pre>
```

• Intuition: Multiplying the loop counter means that the maximum value *n* must grow exponentially to linearly increase the loop runtime

```
sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}</pre>
```

What is the Big-Oh?

Math background: Logarithms

Logarithms

- definition: $X^A = B$ if and only if $log_x B = A$
- intuition: log_X B means:
 "the power X must be raised to, to get B"
- In this course, a logarithm with no base implies base 2.
 log B means log₂ B

Examples

```
-\log_2 16 = 4 (because 2^4 = 16)
```

$$-\log_{10} 1000 = 3$$
 (because $10^3 = 1000$)

Logarithm identities

Identities for logs with addition, multiplication, powers:

- log (AB) = log A + log B
- $\log (A/B) = \log A \log B$
- $log(A^B) = B log A$

Identity for converting bases of a logarithm:

$$\log_A B = \frac{\log_C B}{\log_C A} \quad A, B, C > 0, A \neq 1$$

– example:

$$log_4 32 = (log_2 32) / (log_2 4)$$

= 5 / 2

Techniques: Logarithm problem solving

- When presented with an expression of the form:
 - $-\log_a X = Y$

and trying to solve for X, raise both sides to the a power.

- $-X = a^{Y}$
- When presented with an expression of the form:
 - $-\log_a X = \log_b Y$

and trying to solve for X, find a common base between the logarithms using the identity on the last slide.

$$-\log_a X = \log_a Y / \log_a b$$

Logarithm practice problems

- Determine the value of x in the following equation.
 - $-\log_7 x + \log_7 13 = 3$

- Determine the value of x in the following equation.
 - $-\log_8 4 \log_8 x = \log_8 5 + \log_{16} 6$

Prove identity for converting bases

Prove $log_ab = log_cb / log_ca$.

A log is a log...

We will assume all logs are to base 2

- Fine for Big Oh analysis because the log to one base is equivalent to the log of another base within a constant factor
 - E.g., log₁₀x is equivalent to log₂x within what constant factor?

```
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}</pre>
```

Math background: Arithmetic series

Series

$$\sum_{i=j}^{k} Expr$$

 for some expression Expr (possibly containing i), means the sum of all values of Expr with each value of i between j and k inclusive

Example:

$$\sum_{i=0}^{4} 2i + 1$$
= $(2(0) + 1) + (2(1) + 1) + (2(2) + 1)$
+ $(2(3) + 1) + (2(4) + 1)$
= $1 + 3 + 5 + 7 + 9$
= 25

Series identities

sum from 1 through N inclusive

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

- is there an intuition for this identity?
 - sum of all numbers from 1 to N

$$1 + 2 + 3 + ... + (N-2) + (N-1) + N$$

– how many terms are in this sum? Can we rearrange them?