CSE 373: Data Structures and
Algorithms

Lecture 4: Math Review/Asymptotic
Analysis I



Big-Oh notation

Asymptotic upper bound

Defn: f(n) = O(g(n)), if there
exists positive constants c, n,
such that: f(n) =c - g(n) for all
nz=n,

Idea: We are concerned with
how the function grows when N
is large. We are not concerned
with constant factors: coarse
distinctions among functions

Lingo: "f(n) grows no faster than
g(n)."

f (n)




Functions in Algorithm Analysis
 fln):{0,1,...} =R

— domain of f is the nonnegative integers
— range of f is the nonnegative reals

* Unless otherwise indicated, the symbols f, g, h, and T refer
to functions with this domain and range.

* We use many functions with other domains and ranges.
— Example: f(n)=5nlog, (n/3)

e Although the domain of f is nonnegative integers, the domain
of log, is all positive reals.



Big-Oh example problems

* n=0(2n)?
e 2n=0(n)?

* n=0(n?)?

* n2=0(n)?

e n=0(1) ?
e 100=0(n)?

 214n + 34 =0(2n%?+8n) ?



Preferred big-Oh usage

* pick tightest bound. If f(n) = 5n, then:

fin) = O(n°)

fln) = O(n°)

fln) = O(n log n)
)=

fin

O(n) < preferred

* ignore constant factors and low order terms

fln) = O(n), not f(n) = 0(5n)
f(n) = O(n3), not f(n)=0(n®+n?+nlogn)

— Wrong: f(n) = O(g(n))
— Wrong: f(n) = O(g(n))



Show f(n) = O(n)

Claim: 2n + 6 = O(n)
Proof: Must find c, n, such that for all n > n,,
2n+6<=n



Big omega, theta

* big-Oh Defn: f(n) = O(g(n)) if there exist positive
constants ¢, n, such that:
fln)=c-g(n) foralln=n,

* big-Omega Defn: f(n) = Q(g(n)) if there are positive
constants ¢ and n, such that f(n) = c g(n) for alln = n,
— Lingo: "f(n) grows no slower than g(n)."

* big-Theta Defn: f(n) = ©(g(n)) if and only if f(n) = O(g
(n)) and f(n) = Q(g(n)).

— Big-Oh, Omega, and Theta establish a relative ordering
among all functions of n



Intuition about the notations

notation intuition
O (Big-Oh) f(n) = g(n)
Q (Big-Omega) f(n) = g(n)
© (Theta) f(n) = g(n)

ny ) 0
fn) =©(gn)) f(n)=0(g(n)) f(n) = Lg(n))



Efficiency examples 3




Efficiency examples 3

sum = 0; —
for (int 1 = 1; 1 <= N * N; 1i++) {
for (int § = 1; jJ <= N * N * N; Jj++) {
sum-++; N3

}

~— N2

* So what is the Big-Oh?

N> + 1



Math background: Exponents

* Exponents

— XY, or "X to the Yt power";
X multiplied by itself Y times

 Some useful identities
_ XA XB — XA+B
_ XA /XB — XA-B
— (XA)B = XAB
— XN4XN = 2N
— IN4IN = N+l



for

Efficiency examples 4



Efficiency examples 4

S Ulm

for

= 0;
(int 1 = 1, 1 <= N; 1 += c) { N
sum++; IS NJc + 1
}

’

* What is the Big-Oh?
— Intuition: Adding to the loop counter means that

the loop runtime grows linearly when compared
to its maximum value n.



Efficiency examples 5

= 0;
(int 1 = 1; 1 <= N; 1 *= ¢C) {}?}
sum++; : 5
}

* Intuition: Multiplying the loop counter means that
the maximum value n must grow exponentially to
linearly increase the loop runtime



Efficiency examples 5

sum = 0;
- . — . . — o ] * =
fojgun(ﬁ_{l_l;t 1 l; 1 <= N; 1 c) {}Ioch log. N+ 1

* What is the Big-Oh?



Math background: Logarithms

* Logarithms
— definition: X* =B if and only if log, B = A

— intuition: log, B means:
"the power X must be raised to, to get B"

— In this course, a logarithm with no base implies base 2.
log B means log, B

e Examples
— log, 16 =4 (because 2% = 16)
— log,,1000 =3 (because 10° = 1000)



Logarithm identities

|dentities for logs with addition, multiplication,
powers:

* log (AB)=log A+logB

* log (A/B)=logA—logB

* log (AB)=Blog A

|dentity for converting bases of a logarithm:

A,B,C>0,4A=1

— example:
log,32 = (log, 32) / (log, 4)
=5/2



Techniques: Logarithm problem solving

 When presented with an expression of the form:
— log X=Y

and trying to solve for X, raise both sides to the a
power.

— X=a"

* When presented with an expression of the form:
— log X = log,Y
and trying to solve for X, find a common base between
the logarithms using the identity on the last slide.
— log X =log.Y / log b



Logarithm practice problems

* Determine the value of x in the following equation.
— log,x + log,13 =3

* Determine the value of x in the following equation.
— log, 4 - loggx = log, 5 + log,. 6



Prove identity for converting bases

Prove log_ b = logb / log_a.



Alogis alog...

* We will assume all logs are to base 2

* Fine for Big Oh analysis because the log to one
base is equivalent to the log of another base
within a constant factor

— E.g., log,x is equivalent to log,x within what
constant factor?



Efficiency examples 6

int sum = 0;
for (int 1 = 1; 1 <= n; 1++) {
for (int jJ = 1; 3 <=1/ 2; 3 += 2)

sum++,;



Math background: Arithmetic series

— for some expression Expr (possibly containing i ), means the sum
of all values of Expr with each value of i between j and k
inclusive

Example:
4

2i +1
=J;®+1M4ﬂﬂ+1M4ﬂa+1)
+(2(3)+ 1)+ (2(4)+ 1)
=1+3+5+7+9
=25



Series identities

 sum from 1 through N inclusive
i N(N+1)

l
i=1

* isthere an intuition for this identity?
— sum of all numbers from 1 to N

1+2+3+...+(N-2)+(N-1) +N

— how many terms are in this sum? Can we rearrange
them?



