CSE 373: Data Structures and Algorithms

Lecture 9: Trees

Set ADT

- set: A collection that does not allow duplicates
 - We don't think of a set as having indexes; we just add things to the set in general and don't worry about order
- basic set operations:
 - insert: Add an element to the set (order doesn't matter).
 - remove: Remove an element from the set.
 - search: Efficiently determine if an element is a member of the set.

2

Sets in computer science

- Databases:
 - set of records in a table
- Search engines:
 - set of URLs/webpages on the Internet
- Real world examples:
 - set of all products for sale in a store inventory
 - set of friends on Facebook
 - set of email addresses

Using Sets

add (value)	adds the given value to the set		
contains (value)	returns true if the given value is found in this set		
remove(value)	removes the given value from the set		
clear()	removes all elements of the set		
size()	returns the number of elements in list		
isEmpty()	returns true if the set's size is 0		
toString()	returns a string such as "[3, 42, -7, 15]"		

can construct an empty set, or one based on a given collection

More Set operations

A **U** B Union

A ∩ B Intersection

A - B Difference

addAll

retainAll

removeAll

addAll(collection)	adds all elements from the given collection to this set		
containsAll(coll)	returns true if this set contains every element from given set		
equals (set)	returns true if given other set contains the same elements		
iterator()	returns an object used to examine set's contents		
removeAll(coll)	removes all elements in the given collection from this set		
retainAll(coll)	removes elements not found in given collection from this set		
toArray()	returns an array of the elements in this set		

Accessing elements in a Set

```
for (type name : collection) {
    statements;
}
```

 Provides a clean syntax for looping over the elements of a Set, List, array, or other collection

```
Set<Double> grades = new TreeSet<Double>();
...

for (double grade : grades) {
        System.out.println("Student grade: " + grade);
}
```

needed because sets have no indexes; can't get element i

Sets and ordering

HashSet: elements are stored in an unpredictable order

```
Set<String> names = new HashSet<String>();
names.add("Jake");
names.add("Robert");
names.add("Marisa");
names.add("Kasey");
System.out.println(names);
// [Kasey, Robert, Jake, Marisa]
```

 TreeSet: elements are stored in their "natural" sorted order

```
Set<String> names = new TreeSet<String>();
...
// [Jake, Kasey, Marisa, Robert]
```

Implementing Set ADT

	Insert	Remove	Search
Unsorted array	Θ(n)	$\Theta(n)$	$\Theta(n)$
Sorted array	$\Theta(\log(n)+n)$	$\Theta(\log(n) + n)$	$\Theta(\log(n))$
Linked list	Θ(n)	$\Theta(n)$	$\Theta(n)$

Trees

- tree: A directed, acyclic structure of linked nodes.
 - directed: Has one-way links between nodes.
 - acyclic: No path wraps back around to the same node twice.
 - binary tree: One where each node has at most two children.
- A binary tree can be defined as either:
 - empty (null), or
 - a root node that contains:
 - data,
 - a left subtree, and
 - a right subtree.
 - (The left and/or right subtree could be empty.)

root

Trees in computer science

- folders/files on a computer
- family genealogy; organizational charts
- Al: decision trees
- compilers: parse tree

$$- a = (b + c) * d;$$

cell phone T9

Terminology

- node: an object containing a data value and left/right children
- root: topmost node of a tree
- leaf: a node that has no children
- branch: any internal node; neither the root nor a leaf root

- child: a node that this node refers to
- **sibling**: a node with common parent

StringTreeNode class

```
// A StringTreeNode object is one node in a binary tree of Strings.
public class StringTreeNode {
   public String data;
                               // data stored at this node
   // Constructs a leaf node with the given data.
   public StringTreeNode(String data) {
       this (data, null, null);
   // Constructs a leaf or branch node with the given data and links.
   public StringTreeNode(String data, StringTreeNode left,
       StringTreeNode right) {
       this.data = data;
       this.left = left;
       this.right = right;
```

Binary search trees

- binary search tree ("BST"): a binary tree that is either:
 - empty (null), or
 - a root node R such that:
 - every element of R's left subtree contains data "less than" R's data,
 - every element of R's right subtree contains data "greater than" R's,
 - R's left and right subtrees are also binary search trees.

 BSTs store their elements in sorted order, which is helpful for searching/sorting tasks.

Exercise

 Which of the trees shown are legal binary search trees?

Programming with Binary Trees

- Many tree algorithms are recursive
 - Process current node, recur on subtrees
 - Base case is empty tree (null)
- traversal: An examination of the elements of a tree.
 - A pattern used in many tree algorithms and methods
- Common orderings for traversals:
 - pre-order: process root node, then its left/right subtrees
 - in-order: process left subtree, then root node, then right
 - post-order: process left/right subtrees, then root node

Tree Traversal (in order)

```
// Returns a String representation of StringTreeSet with elements in
// their "natural order" (e.g., [Jake, Kasey, Marisa, Robert]).
public String toString() {
    String str = "[" + toString(root);
    if (str.length() > 1) { str = str.substring(0, str.length()-2); }
   return str + "]";
// recursive helper; in-order traversal
private String toString(StringTreeNode root) {
    String str = "";
    if (root != null) {
        str += toString(root.left);
        str += root.data + ", ";
        str += toString(root.right);
    return str;
```