CSE 373: Data Structures and
Algorithms

AVL Tree Motivation

Observation: the shallower the BST the better

 For a BST with n nodes
— Average case height is O(log n)
— Worst case height is ©(n)

 Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario: he|ght O(n)

Strategy: Don't let the tree get lopsided
* Constantly monitor balance for each subtree
 Rebalance subtree before going too far astray

Balanced Tree

* Balanced Tree: a tree in which heights of
subtrees are approximately equal

47 76 ar)
Q@ B & © ®

unbalanced tree balanced tree

AVL trees

* AVL tree: a binary search tree that uses modified add
and remove operations to stay balanced as items are
added to and remove from it

— specifically, maintains a balance factor of each node of 0, 1, or -1
* i.e. no node's two child subtrees differ in height by more than 1

— invented in 1962 by two Russian mathematicians (Adelson-
Velskii and Landis)

— one of several auto-balancing trees (others in book)

* balance factor, for a tree node n :
— height of n's right subtree minus height of n's left subtree
— BF, = Heightn.right B Heightn.lef‘t
— start counting heights at n

AVL tree examples

Two binary search trees:
(@) an AVL tree
(b) not an AVL tree (unbalanced nodes are darkened)

B

More AVL tree examples

Not AVL tree examples

AVL Tree Height

* The height of an AVL Tree is ®(log n)

 Justification: Find n(h): the minimum number
of nodes in an AVL tree of height h
—n(0)=1andn(1)=2
— For h >=2, an AVL tree of height h contains the

root node, an AVL subtree of height h -1 and an
AVL subtree of heighth-1orh-2

e n(h)=1+n(h-1)+n(h-2)

— Solving this recurrence leads to ©(log n)

AVL Trees: search, insert, remove

e AVL search:
— Same as BST search.

* AVL insert:

— Same as BST insert, except you need to check
your balance and may need to “fix” the AVL
tree after the insert.

* AVL remove:
— Remove it, check your balance, and fix it.

Testing the Balance Property

We need to be able to:
1. Track Balance Factor
2. Detect Imbalance

3. Restore Balance

Tracking Balance

10
3 data
10 0 height
1 / \ children
5 20 [\
1 0 0
9 15 30

Problem cases for AVL insert

1. LL Case: insertion into left subtree of node's left child
2. LR Case: insertion into right subtree of node's left child

Problem cases for AVL insert, cont.

3. RL Case: insertion into left subtree of node's right child

4. RR Case: insertion into right subtree of node's right child

14

Maintaining Balance

* Maintain balance using rotations

— The idea: locally reorganize the nodes of an
unbalanced subtree until they are balanced, by
"rotating" a trio of parent - leftChild — rightChild

* Maintaining balance will result in searches
(contains) that take ©(log n)

Right rotation to fix Case 1 (LL)

right rotation (clockwise): left child becomes parent;
original parent demoted to right

(a) Before rotation (b) After rotation

16

Right rotation example

(a) Before rotation (b) After rotation

17

Right rotation, steps

1. detach left child (7)'s right subtree (10) (don't lose it!)
2. consider left child (7) be the new parent

3. attach old parent (13) onto right of new parent (7)

4. attach old left child (7)'s old right subtree (10) as left
subtree of new right child (13)

13 7 7 7
/ /\ /\
7 15 5| |13 Bl | 13 5| |13
/\10 { 15 3/ 15 :{ 1{\15

w\m

10 10

18

Initial tree

7(-1)

[\

5(0)

9 (0)

N\

3 (0)

6 (0)

After insertion

7(-2)

/ \

Right Rotation

Right rotation example

5(0)

[\

5(-1)

9(0)

3(-1)

7 (0)

/[\

3 (-1)

6 (0)

1(0)

New node

[/ \

1(0)

6 (0)

9 (0)

19

Code for right rotation

private StringTreeNode rightRotate (StringTreeNode parent)
// 1. detach left child's right subtree
StringTreeNode leftright = parent.left.right;

// 2. consider left child to be the new parent
StringTreeNode newParent = parent.left;

// 3. attach old parent onto right of new parent
newParent.right = parent;

// 4. attach old left child's old right subtree as
// left subtree of new right child
newParent.right.left = leftright;

parent.height = computeHeight (parent);
newParent.height = computeHeight (newParent);

return newParent;

20

