CSE 373: Data Structures and Algorithms

Lecture 11: Trees III

AVL Tree Motivation

Observation: the shallower the BST the better

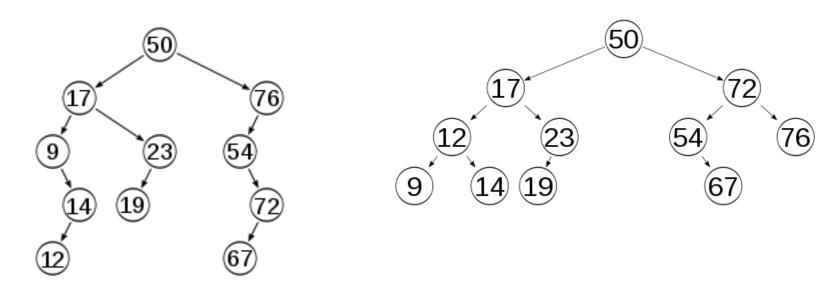
- For a BST with n nodes
 - Average case height is $\Theta(\log n)$
 - Worst case height is $\Theta(n)$
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario: height $\Theta(n)$

Strategy: Don't let the tree get lopsided

- Constantly monitor balance for each subtree
- Rebalance subtree before going too far astray

Balanced Tree

• Balanced Tree: a tree in which heights of subtrees are approximately equal



unbalanced tree

balanced tree

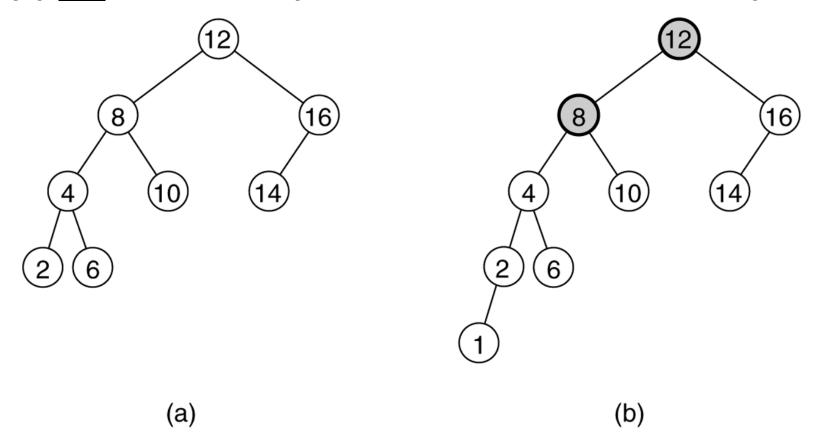
AVL trees

- AVL tree: a binary search tree that uses modified add and remove operations to stay balanced as items are added to and remove from it
 - specifically, maintains a balance factor of each node of 0, 1, or -1
 - i.e. no node's two child subtrees differ in height by more than 1
 - invented in 1962 by two Russian mathematicians (<u>A</u>delson-<u>V</u>elskii and <u>L</u>andis)
 - one of several auto-balancing trees (others in book)
- **balance factor**, for a tree node *n* :
 - height of n's right subtree minus height of n's left subtree
 - $-BF_n = Height_{n.right} Height_{n.left}$
 - start counting heights at n

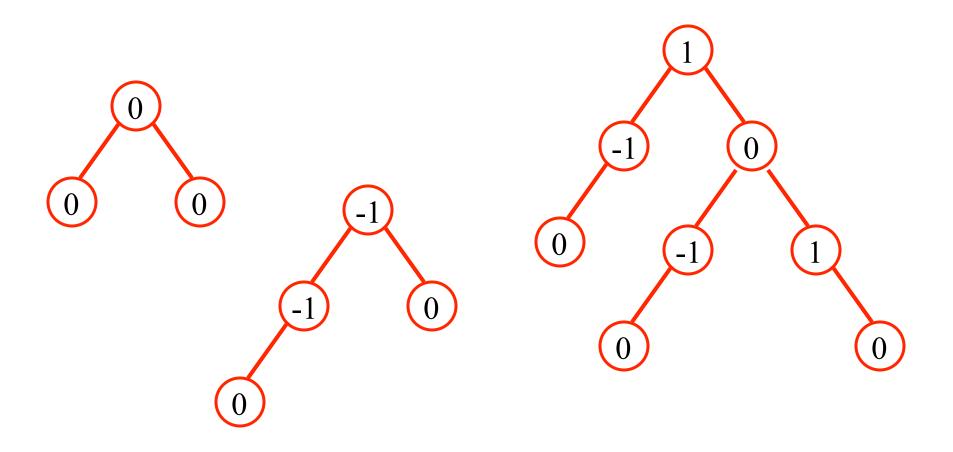
AVL tree examples

Two binary search trees:

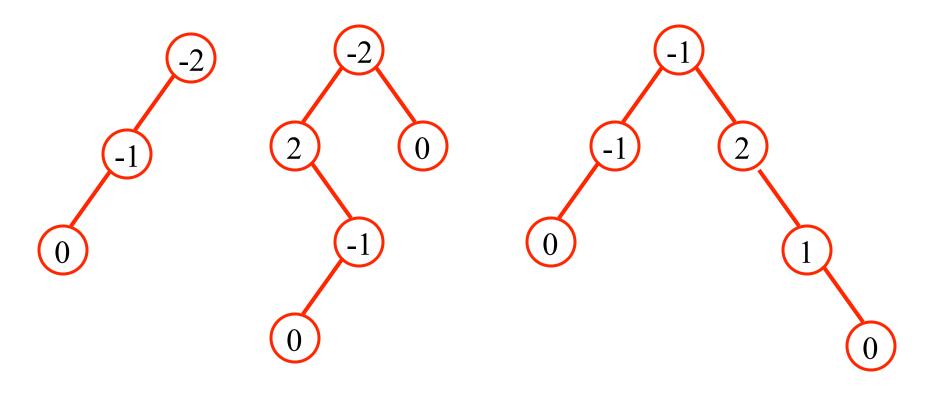
- (a) an AVL tree
- (b) <u>not</u> an AVL tree (unbalanced nodes are darkened)



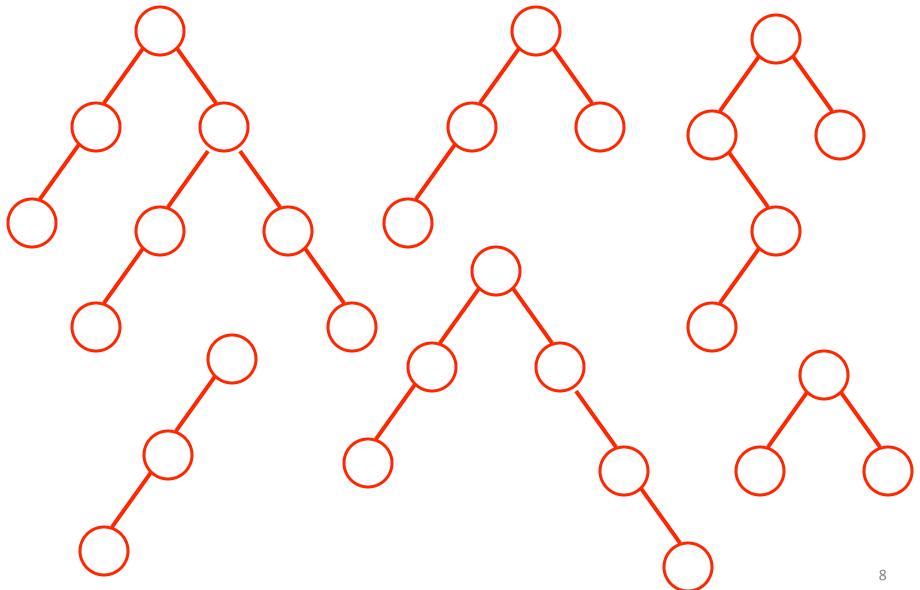
More AVL tree examples



Not AVL tree examples



Which are AVL trees?



AVL Tree Height

- The height of an AVL Tree is $\Theta(\log n)$
- Justification: Find n(h): the minimum number of nodes in an AVL tree of height h
 - n(0) = 1 and n(1) = 2
 - For h >= 2, an AVL tree of height h contains the root node, an AVL subtree of height h - 1 and an AVL subtree of height h - 1 or h - 2
 - n(h) = 1 + n(h 1) + n(h 2)
 - Solving this recurrence leads to $\Theta(\log n)$

AVL Trees: search, insert, remove

AVL search:

Same as BST search.

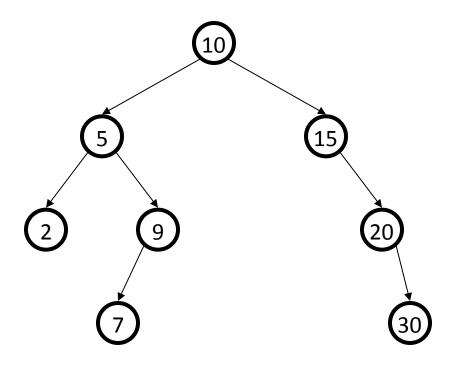
AVL insert:

 Same as BST insert, except you need to check your balance and may need to "fix" the AVL tree after the insert.

• AVL remove:

Remove it, check your balance, and fix it.

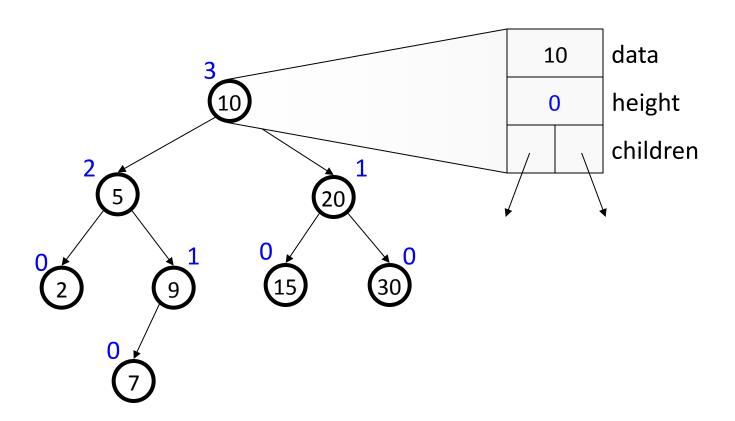
Testing the Balance Property



We need to be able to:

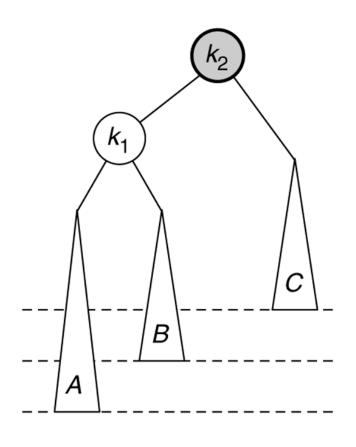
- 1. Track Balance Factor
- 2. Detect Imbalance
- 3. Restore Balance

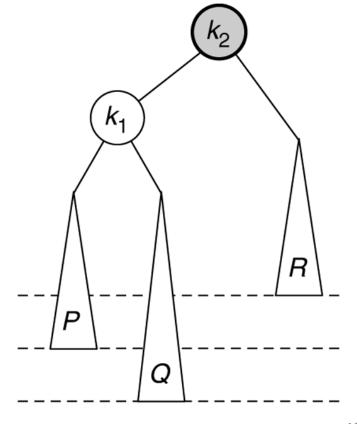
Tracking Balance



Problem cases for AVL insert

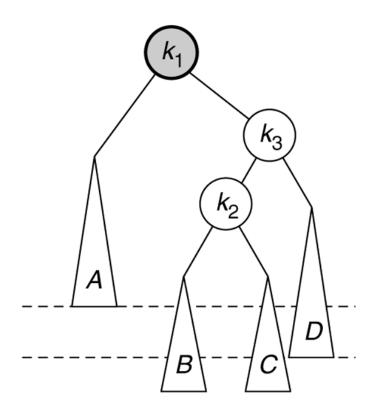
- 1. LL Case: insertion into left subtree of node's left child
- 2. LR Case: insertion into right subtree of node's left child

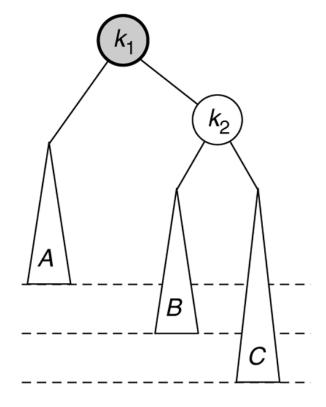




Problem cases for AVL insert, cont.

- 3. RL Case: insertion into left subtree of node's right child
- 4. RR Case: insertion into right subtree of node's right child





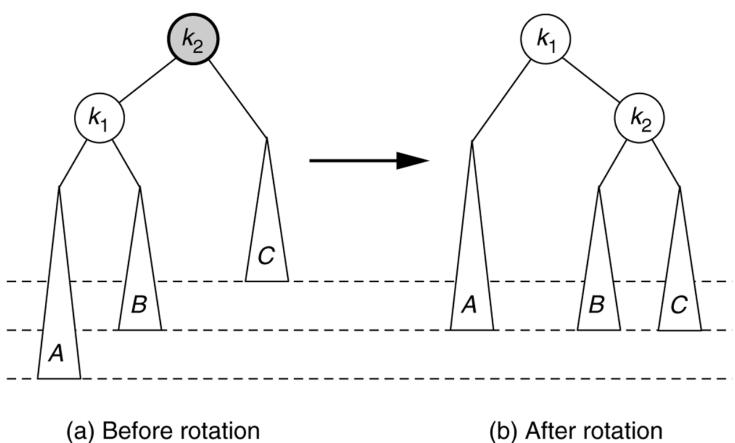
Maintaining Balance

- Maintain balance using rotations
 - The idea: locally reorganize the nodes of an unbalanced subtree until they are balanced, by "rotating" a trio of parent - leftChild – rightChild

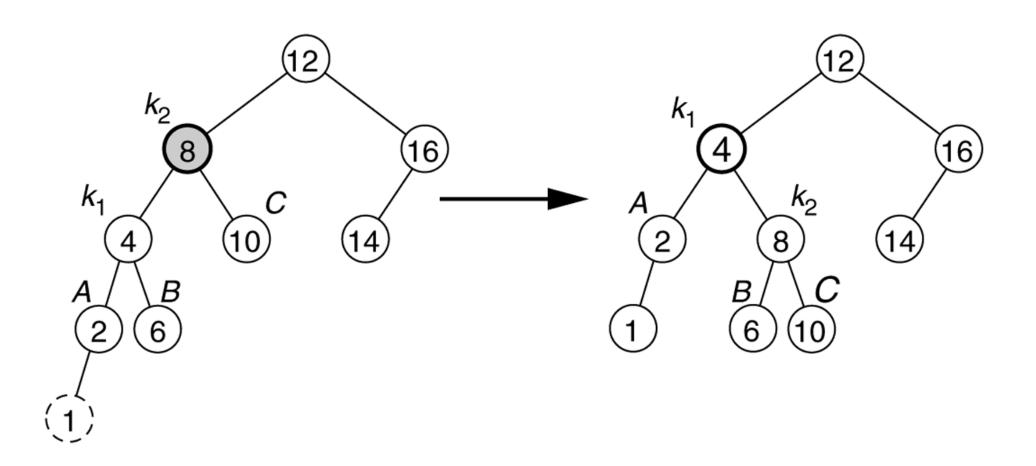
 Maintaining balance will result in searches (contains) that take Θ(log n)

Right rotation to fix Case 1 (LL)

right rotation (clockwise): left child becomes parent; original parent demoted to right



Right rotation example

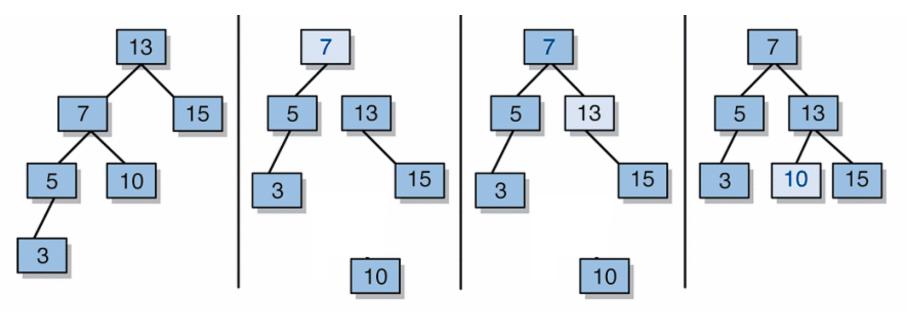


(a) Before rotation

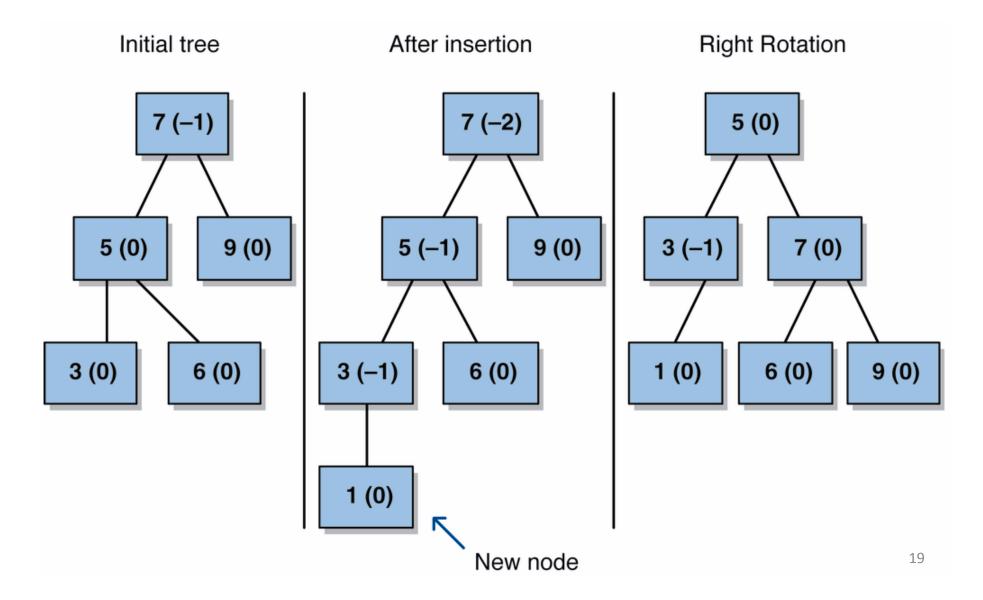
(b) After rotation

Right rotation, steps

- detach left child (7)'s right subtree (10) (don't lose it!)
- 2. consider left child (7) be the new parent
- attach old parent (13) onto right of new parent (7)
- attach old left child (7)'s old right subtree (10) as left subtree of new right child (13)



Right rotation example



Code for right rotation

```
private StringTreeNode rightRotate(StringTreeNode parent) {
// 1. detach left child's right subtree
StringTreeNode leftright = parent.left.right;
// 2. consider left child to be the new parent
StringTreeNode newParent = parent.left;
// 3. attach old parent onto right of new parent
newParent.right = parent;
// 4. attach old left child's old right subtree as
// left subtree of new right child
newParent.right.left = leftright;
parent.height = computeHeight(parent);
newParent.height = computeHeight(newParent);
return newParent;
```