CSE 373: Data Structures and
Algorithms

What are graphs?

* Yes, this is a graph....

L rrrigd

'qu)g “
i w‘&
.Jr“\\

i W
Eqr r,l‘\
ARl R L AT

‘uv] .1“‘_‘

rtrrrrerrrrrrrrrrrmrrrrrerrrmrrerrrrrerrrerrrrerrrerereerererel
97 Aprdullct98AprJullct99AprduDctddAprduldctal Apr

"

‘-».[Hﬁ.

T

N 1 N N T o v |

B 0 4 R B R B R B e B i e B e
oottt gl gu] g g SR TENTA T AV E S S8 O Sl [B () [0 e)
SN AN AN AN SO NS NS NS M
UONONDADANDADNDNDASNDANDADAND AN

* But we are interested in a different kind of “graph”

Airline Routes

\ Mingtﬂl'l

salt lake city ny/jfk

oakland dc/dulles
ontario

long beach

. : -
san diego

................

..................

Nodes = cities
Edges = direct flights

==
Seoul

56

Computer Networks

HE=

16

===

Tokyo

30

Sydney

Seattle
L 128
= fl==
181 New York
140
==
L.A.

Nodes = computers
Edges = transmission rates

CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite

Graphs

e graph: a data structure containing
— a set of vertices V

— a set of edges E, where an edge °
represents a connection between 2 vertices

— G=(V, E)

— edge is a pair (v, w) where v, win V a

* the graph atright: V={a, b, c} and E ={(a, b), (b, c), (c, a)}

— Assuming that a graph can only have one edge between a pair of
vertices and cannot have an edge to itself, what is the maximum
number of edges a graph can contain, relative to the size of the vertex
set V?

Paths

path: a path from vertex A to B is a sequence of edges that
can be followed starting from A to reach B

— can be represented as vertices visited or edges taken
— example: path from V to Z: {b, h} or {V, X, Z}

reachability: v, is reachable from v, if a
path exists from V1 to V2

connected graph: one in which it's
possible to reach any node from any other

— is this graph connected?

Cycles

e cycle: path from one node back to itself
—example: {b, g, f, c,alor{V,X, Y, W, U, V}

* loop: edge directly from node to
itself

— many graphs don't allow loops

Weighted graphs

* weight: (optional) cost associated with a given edge

 example: graph of airline flights

— if we were programming this graph, what information
would we have to store for each vertex / edge?

Directed graphs

* directed graph (digraph): edges are one-way
connections between vertices

— if graph is directed, a vertex has a separate in/out
degree

Trees as Graphs

* Every tree is a graph with
some restrictions:

—the tree is directed

—there is exactly one
directed path from the
root to every node

More terminology

* degree: number of edges touching a vertex
— example: W has degree 4
— what is the degree of X? of Z?

e adjacent vertices: connected
directly by an edge

Graph questions

* Are the following graphs directed or not
directed?

— Buddy graphs of instant messaging programs?
(vertices = users, edges = user being on another's buddy
list)

— bus line graph depicting all of Seattle's bus stations and
routes

— graph of movies in which actors have appeared together

* Are these graphs potentially cyclic? Why or
why not?

Graph exercise

* Consider a graph of instant messenger buddies.
— What do the vertices represent? What does an edge represent?
— Is this graph directed or undirected? Weighted or unweighted?
— What does a vertex's degree mean? In degree? Out degree?
— Can the graph contain loops? cycles?

* Consider this graph data:
— Jessica's buddy list: Meghan, Alan, Martin.
— Meghan's buddy list: Alan, Lori.
— Toni's buddy list: Lori, Meghan.
— Martin's buddy list: Lori, Meghan.
— Alan's buddy list: Martin, Jessica.
— Lori's buddy list: Meghan.

— Compute the in/out degree of each vertex. Is the graph connected?
— Who is the most popular? Least? Who is the most antisocial?

— If we're having a party and want to distribute the message the most quickly,
who should we tell first?

Depth-first search

* depth-first search (DFS): finds a path between
two vertices by exploring each possible path
as many steps as possible before backtracking

— often implemented recursively

DES example

* All DFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A>B->D
— A>B->F
— A>B->F->E
— A->C
— A>C->G

 What are the paths that DFS did not find?

16

DFS pseudocode

* Pseudo-code for depth-first search:
dfs(vl, v2):
dfs(vi, v2, {})
dfs(vl, v2, path):
path +=v1.
mark v1 as visited.
ifvlisv2:
path is found.

for each unvisited neighbor v, of v1
where there is an edge from v1 to v;:

if dfs(v, v2, path) finds a path, path is found.
path -=v1. path is not found.

o
DFS observations ofc}o

© ©® ©
* guaranteed to find a path if one exists

* easy to retrieve exactly what the path
is (to remember the sequence of edges
taken) if we find it

e optimality: not optimal. DFS is guaranteed to
find a path, not necessarily the best/shortest
path

— Example: DFS(A, E) may return
A->B->F->E

Another DFS example
e Using DFS, find a path from BOS to LAX.

Breadth-first search

* breadth-first search (BFS): finds a path
between two nodes by taking one step down
all paths and then immediately backtracking

— often implemented by maintaining
a list or queue of vertices to visit

— BFS always returns the path with
the fewest edges between the start (e) (© (&)

and the goal vertices ofoXo

BFS example

e All BFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A->C
— A->E
— A>B->D
— A>B->F
— A>C->G

 What are the paths that BFS did not find?

21

BFS pseudocode

* Pseudo-code for breadth-first search:
bfs(vl, v2):
List :={v1}.
mark v1 as visited.

while List not empty:
v := List.removefFirst().
ifvisv2:
path is found.

for each unvisited neighbor v; of v
where there is an edge from v to v;:

mark v as visited
List.addLast(v,).

path is not found.

22

BFS observations

optimality:
— in unweighted graphs, optimal. (fewest edges = best)

— In weighted graphs, not optimal.
(path with fewest edges might not have the lowest weight)

disadvantage: harder to reconstruct what the actual path is once
you find it

— conceptually, BFS is exploring many possible paths in parallel, so it's
not easy to store a Path array/list in progress

observation: any particular vertex is only part of one partial path at
a time
— We can keep track of the path by storing predecessors for each vertex
(references to the previous vertex in that path)

Another BFS example
e Using BFS, find a path from BOS to LAX.

24

DFS, BFS runtime

What is the expected runtime of DFS, in terms of the
number of vertices V and the number of edges E ?

What is the expected runtime of BFS, in terms of the
number of vertices V and the number of edges E ?

Answer: O(| V| + | E|)

— each algorithm must potentially visit every node and/or
examine every edge once.

— why not O(| V| * |E|) ?

What is the space complexity of each algorithm?

