CSE 373: Data Structures and
Algorithms



What are graphs?

* Yes, this is a graph....
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* But we are interested in a different kind of “graph”



Airline Routes
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Nodes = cities
Edges = direct flights
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Nodes = computers
Edges = transmission rates



CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite



Graphs

e graph: a data structure containing
— a set of vertices V

— a set of edges E, where an edge °
represents a connection between 2 vertices

— G=(V, E)

— edge is a pair (v, w) where v, win V a

* the graph atright: V={a, b, c} and E ={(a, b), (b, c), (c, a)}

— Assuming that a graph can only have one edge between a pair of
vertices and cannot have an edge to itself, what is the maximum
number of edges a graph can contain, relative to the size of the vertex
set V?



Paths

path: a path from vertex A to B is a sequence of edges that
can be followed starting from A to reach B

— can be represented as vertices visited or edges taken
— example: path from V to Z: {b, h} or {V, X, Z}

reachability: v, is reachable from v, if a
path exists from V1 to V2

connected graph: one in which it's
possible to reach any node from any other

— is this graph connected?



Cycles

e cycle: path from one node back to itself
—example: {b, g, f, c,alor{V,X, Y, W, U, V}

* loop: edge directly from node to
itself

— many graphs don't allow loops




Weighted graphs

* weight: (optional) cost associated with a given edge

 example: graph of airline flights

— if we were programming this graph, what information
would we have to store for each vertex / edge?




Directed graphs

* directed graph (digraph): edges are one-way
connections between vertices

— if graph is directed, a vertex has a separate in/out
degree




Trees as Graphs

* Every tree is a graph with
some restrictions:

—the tree is directed

—there is exactly one
directed path from the
root to every node



More terminology

* degree: number of edges touching a vertex
— example: W has degree 4
— what is the degree of X? of Z?

e adjacent vertices: connected
directly by an edge




Graph questions

* Are the following graphs directed or not
directed?

— Buddy graphs of instant messaging programs?
(vertices = users, edges = user being on another's buddy
list)

— bus line graph depicting all of Seattle's bus stations and
routes

— graph of movies in which actors have appeared together

* Are these graphs potentially cyclic? Why or
why not?



Graph exercise

* Consider a graph of instant messenger buddies.
— What do the vertices represent? What does an edge represent?
— Is this graph directed or undirected? Weighted or unweighted?
— What does a vertex's degree mean? In degree? Out degree?
— Can the graph contain loops? cycles?

* Consider this graph data:
— Jessica's buddy list: Meghan, Alan, Martin.
— Meghan's buddy list: Alan, Lori.
— Toni's buddy list: Lori, Meghan.
— Martin's buddy list: Lori, Meghan.
— Alan's buddy list: Martin, Jessica.
— Lori's buddy list: Meghan.

— Compute the in/out degree of each vertex. Is the graph connected?
— Who is the most popular? Least? Who is the most antisocial?

— If we're having a party and want to distribute the message the most quickly,
who should we tell first?



Depth-first search

* depth-first search (DFS): finds a path between
two vertices by exploring each possible path
as many steps as possible before backtracking

— often implemented recursively




DES example

* All DFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A>B->D
— A>B->F
— A>B->F->E
— A->C
— A>C->G

 What are the paths that DFS did not find?
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DFS pseudocode

* Pseudo-code for depth-first search:
dfs(vl, v2):
dfs(vi, v2, {})
dfs(vl, v2, path):
path +=v1.
mark v1 as visited.
ifvlisv2:
path is found.

for each unvisited neighbor v, of v1
where there is an edge from v1 to v;:

if dfs(v, v2, path) finds a path, path is found.
path -=v1. path is not found.



o
DFS observations ofc}o

© ©® ©
* guaranteed to find a path if one exists

* easy to retrieve exactly what the path
is (to remember the sequence of edges
taken) if we find it

e optimality: not optimal. DFS is guaranteed to
find a path, not necessarily the best/shortest
path

— Example: DFS(A, E) may return
A->B->F->E



Another DFS example
e Using DFS, find a path from BOS to LAX.




Breadth-first search

* breadth-first search (BFS): finds a path
between two nodes by taking one step down
all paths and then immediately backtracking

— often implemented by maintaining
a list or queue of vertices to visit

— BFS always returns the path with
the fewest edges between the start (e) (© (&)

and the goal vertices ofoXo




BFS example

e All BFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A->C
— A->E
— A>B->D
— A>B->F
— A>C->G

 What are the paths that BFS did not find?
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BFS pseudocode

* Pseudo-code for breadth-first search:
bfs(vl, v2):
List :={v1}.
mark v1 as visited.

while List not empty:
v := List.removefFirst().
ifvisv2:
path is found.

for each unvisited neighbor v; of v
where there is an edge from v to v;:

mark v as visited
List.addLast(v,).

path is not found.
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BFS observations

optimality:
— in unweighted graphs, optimal. (fewest edges = best)

— In weighted graphs, not optimal.
(path with fewest edges might not have the lowest weight)

disadvantage: harder to reconstruct what the actual path is once
you find it

— conceptually, BFS is exploring many possible paths in parallel, so it's
not easy to store a Path array/list in progress

observation: any particular vertex is only part of one partial path at
a time
— We can keep track of the path by storing predecessors for each vertex
(references to the previous vertex in that path)



Another BFS example
e Using BFS, find a path from BOS to LAX.
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DFS, BFS runtime

What is the expected runtime of DFS, in terms of the
number of vertices V and the number of edges E ?

What is the expected runtime of BFS, in terms of the
number of vertices V and the number of edges E ?

Answer: O(| V| + | E|)

— each algorithm must potentially visit every node and/or
examine every edge once.

— why not O(| V| * |E|) ?

What is the space complexity of each algorithm?



