CSE 373: Data Structures and
Algorithms

Implementing a graph

If we wanted to program an actual data structure to represent a graph,
what information would we need to store?

— for each vertex?

— for each edge?

What kinds of questions
would we want to be able to
answer quickly:

2
!
— about a vertex?
— about its edges / neighbors? N
— about paths?
— about what edges exist in the graph?

~
)
5

We'll explore three common graph implementation strategies:
— edge list, adjacency list, adjacency matrix

Edge list

edge list: an unordered list of all edges in the graph

advantages
— easy to loop/iterate over all edges

disadvantages 1

/

— hard to tell if an edge
exists from A to B

— hard to tell how many edges
a vertex touches (its degree)

2

/

V4

111]12|2|3|5|5]|5]|7 N

~
.
5

5|6 |7(3|4|6|7|4)|4

Adjacency matrix

adjacency matrix: an n x n matrix where:

— the nondiagonal entry a; is the number of edges joining vertex i and

vertex j (or the weight 01‘ the edge joining vertex i and vertex j)

— the diagonal entry g, corresponds to the number of loops (self-
connecting edges) at vertex i

&
v

|
= O O~ N
oo~ OO
= =0 = O O

O O~ QO
oo O =

Pros/cons of Adj. matrix

* advantage: fast to tell whether edge exists between
any two vertices i and j (and to get its weight)

e disadvantage: consumes a lot of memory on sparse
graphs (ones with few edges)

P (2100 10
{4 1 0 10 1 0O
01 0100
/5 0010 11
RN 1 1 0 1 0 0O
A \o0 0 0 1 0 0/

Adjacency matrix example

* The graph at right has the following adjacency matrix:

NO Ok, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?

1

2

/

/

14

1 2 345 67

0(1{]0/0]1|1]0
1170]11]0/0]0 |1
0/1/0{1]0|0]0
0/(0|1|0|1|0]1
1170/0]1]10]1]1
110[{0]0[1]0]0
0101100

6

~
.
5

Adjacency lists

e adjacency list: stores edges as individual linked lists of
references to each vertex's neighbors

— generally, no information needs to be stored in the edges,
only in nodes, these arrays can simply be pointers to other
nodes and thus represent edges with little memory
requirement

12 —» 3(1

1) —
1 4(10)— 3(3) =
2 0@ —* 506 —
3| 4(@2) —» 6(4) —» 50B8) —¥ 2(2)

Pros/cons of adjacency list

advantage: new nodes can be added to the graph easily, and they can be
connected with existing nodes simply by adding elements to the
appropriate arrays; "who are my neighbors" easily answered

disadvantage: determining whether an edge exists between two nodes
requires O(n) time, where n is the average number of incident edges per
node

3|42 | 64 —» 58 —¥ 2(2)

Adjacency list example

 The graph at right has the following adjacency list:

NO OO, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?

\ 4 \ 4

2

1

/

\ 4 \ 4

\ 4

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 A 4

B[O INWIN

Q| O |= | N [|=] O

\ 4

/\
(N
>

Runtime table

= n vertices, m edges

= no parallel edges Edge Adjacency Adjacency

= NO Self'IOOpS List List Matrix
Space n+m n+m n?

Finding all adjacent

vertices to v m deg(v) n

Determining if v is

adjacent to w m deg(v) 1

inserting a vertex 1 1 n2

inserting an edge 1 1 1

removing vertex v m 1 n?

removing an edge m deg(v) 1

~NOoO Ok~ WN =

Practical implementation

Not all graphs have vertices/edges that are easily "numbered"

— how do we actually represent 'lists' or 'matrices' of vertex/edge relationships?
How do we quickly look up the edges and/or vertices adjacent to a given
vertex?

— Adjacency list: Map<V, List<V>>
— Adjacency matrix: Map<V, Map<V, E>>

A 4
A 4

v
(®))

A 4

A 4

A 4
~l

A 4
A 4

A 4
\ 4

4
~
v
A

A 4

A 4

v
BI|= 0] WO IN] W] IN
v
OO = N [[=O
4
(9}

oln|=lololm|o
~slololo|l=|lo)l=
olololm|lolmn|o
~lolm|lo=|lolo
alnlol—m|lolo)—
olo|~lololo|—~
olo|n|lm|lol~|o

v
N

11

Maps and sets within graphs

since not all vertices can be numbered, we can use:

1. adjacency list
— each Vertex maps to a List of edges
— Vertex --> List of Edges

— to get all edges adjacent to V,, look up
List<Edge> neighbors = map.get(V,)

2. adjacency map (adjacency matrix for objects)
— each Vertex maps to a hashtable of adjacent vertices
— Vertex --> (Vertex --> Edge)

— to find out whether there's an edge from V1 to V2, call
map.get(V1).containsKey(V2)

— to get the edge from V1 to V2, call map.get(V1).get(V2)

Implementing Graph with

Adjacency List

public interface Graph<V> {

public

public

public

public

public

public

public

void addVertex (V v);

void addEdge(V vl1l, V v2, int weight);

boolean hasEdge(V v1, V v2);

Edge<V> getEdge(V v1, V v2);

boolean hasPath (Vv vl1l, V v2);

List<V> getDFSPath(V vl, V v2);

String toString() ;

Edge class

public class Edge<V> {
public V from, to;
public int weight;

public Edge(V from, V to, int weight) {
if (from == null || to == null) {
throw new IllegalArgumentException ("null");
}
this.from = from;
this.to = to;
this.weight = weight;

public String toString() {
return "<" + from + ", " + to + ", " + Weight + ">",

14

