CSE 373: Data Structures and
Algorithms



Implementing a graph

If we wanted to program an actual data structure to represent a graph,
what information would we need to store?

— for each vertex?

— for each edge?

What kinds of questions
would we want to be able to
answer quickly:

2
!
— about a vertex?
— about its edges / neighbors? N
— about paths?
— about what edges exist in the graph?
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We'll explore three common graph implementation strategies:
— edge list, adjacency list, adjacency matrix



Edge list

edge list: an unordered list of all edges in the graph

advantages
— easy to loop/iterate over all edges

disadvantages 1

/

— hard to tell if an edge
exists from A to B

— hard to tell how many edges
a vertex touches (its degree)
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Adjacency matrix

adjacency matrix: an n x n matrix where:

— the nondiagonal entry a; is the number of edges joining vertex i and

vertex j (or the weight 01‘ the edge joining vertex i and vertex j)

— the diagonal entry g, corresponds to the number of loops (self-
connecting edges) at vertex i

&
v

|
= O O~ N
oo~ OO
= =0 = O O

O O~ QO
oo O =




Pros/cons of Adj. matrix

* advantage: fast to tell whether edge exists between
any two vertices i and j (and to get its weight)

e disadvantage: consumes a lot of memory on sparse
graphs (ones with few edges)
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Adjacency matrix example

* The graph at right has the following adjacency matrix:

NO Ok, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?
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Adjacency lists

e adjacency list: stores edges as individual linked lists of
references to each vertex's neighbors

— generally, no information needs to be stored in the edges,
only in nodes, these arrays can simply be pointers to other
nodes and thus represent edges with little memory
requirement
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Pros/cons of adjacency list

advantage: new nodes can be added to the graph easily, and they can be
connected with existing nodes simply by adding elements to the
appropriate arrays; "who are my neighbors" easily answered

disadvantage: determining whether an edge exists between two nodes
requires O(n) time, where n is the average number of incident edges per
node
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Adjacency list example

 The graph at right has the following adjacency list:

NO OO, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?
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Runtime table

= n vertices, m edges

= no parallel edges Edge Adjacency Adjacency

= NO Self'IOOpS List List Matrix
Space n+m n+m n?

Finding all adjacent

vertices to v m deg(v) n

Determining if v is

adjacent to w m deg(v) 1

inserting a vertex 1 1 n2

inserting an edge 1 1 1

removing vertex v m 1 n?

removing an edge m deg(v) 1
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Practical implementation

Not all graphs have vertices/edges that are easily "numbered"

— how do we actually represent 'lists' or 'matrices' of vertex/edge relationships?
How do we quickly look up the edges and/or vertices adjacent to a given
vertex?

— Adjacency list: Map<V, List<V>>
— Adjacency matrix: Map<V, Map<V, E>>
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Maps and sets within graphs

since not all vertices can be numbered, we can use:

1. adjacency list
— each Vertex maps to a List of edges
— Vertex --> List of Edges

— to get all edges adjacent to V,, look up
List<Edge> neighbors = map.get(V,)

2. adjacency map (adjacency matrix for objects)
— each Vertex maps to a hashtable of adjacent vertices
— Vertex --> (Vertex --> Edge)

— to find out whether there's an edge from V1 to V2, call
map.get(V1).containsKey(V2)

— to get the edge from V1 to V2, call map.get(V1).get(V2)



Implementing Graph with

Adjacency List

public interface Graph<V> {

public

public

public

public

public

public

public

void addVertex (V v);

void addEdge(V vl1l, V v2, int weight);

boolean hasEdge(V v1, V v2);

Edge<V> getEdge(V v1, V v2);

boolean hasPath (Vv vl1l, V v2);

List<V> getDFSPath(V vl, V v2);

String toString() ;



Edge class

public class Edge<V> {
public V from, to;
public int weight;

public Edge(V from, V to, int weight) {
if (from == null || to == null) {
throw new IllegalArgumentException ("null");
}
this.from = from;
this.to = to;
this.weight = weight;

public String toString() {
return "<" + from + ", " + to + ", " + Weight + ">",
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