CSE 373: Data Structures and
Algorithms

Dijkstra pseudocode

Dijkstra(v1, v2):
for each vertex v: // Initialization
v's distance := infinity.
v's previous := none.
v1's distance := 0.
List := {all vertices}.

while List is not empty:
v := remove List vertex with minimum distance.
mark v as known.
for each unknown neighbor n of v:
dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance:
n's distance := dist.
n's previous :=v.

reconstruct path from v2 back to v,
following previous pointers.

Time Complexity: Using List

The simplest implementation of the Dijkstra's algorithm
stores vertices in an ordinary linked list or array
— Good for dense graphs (many edges)

|V | vertices and |E| edges
Initialization O(|V|)
While loop O(| V)

— Find and remove min distance vertices O(|V|)
— Potentially |E| updates
* Update costs O(1)

* Reconstruct path O(|E|)

Total ime O(| V2| + |E|) = O(|V?])

Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than |V?| edges)
Dijkstra's implemented more efficiently by priority queue

* [nitialization O(|V|) using O(|V|) buildHeap
* While loop O(|V])

— Find and remove min distance vertices O(log |V|) using O(log |V])
deleteMin

— Potentially |E| updates
» Update costs O(log |V|) using decreaseKey

* Reconstruct path O(|E|)

Total time O(|V|log|V| + |E|log|V]|) = O(|E|log|V])

« |V]|=0(|E|)assuming a connected graph

Dijkstra's Exercise

* Use Dijkstra's algorithm to determine the lowest cost path from vertex A
to all of the other vertices in the graph. Keep track of previous vertices so
that you can reconstruct the path later.

Topological Sort

Problem: Find an order in
which all these courses can
be taken.

Example: 142 - 143 - 378
- 370 2 321 2 341 - 322
- 326 2 421 =2 401

In order to take a course, you must
take all of its prerequisites first

Topological Sort

Given a digraph G = (V, E), find a total ordering of its
vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

Topo sort - good example

Any total ordering in which
all the arrows go to the right
@ is a valid solution

A 4

(&)

N
(ar-(8)|(®)|(©xDKE)

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

Topo sort - bad example

Any ordering in which
an arrow goes to the left
@ is not a valid solution

oy
T@@

Only acyclic graphs can be
topologically sorted

* Adirected graph with a cycle cannot be
topologically sorted.

Topological sort algorithm: 1

Step 1: Identify vertices that have no incoming edges
e The “in-degree” of these vertices is zero

11

Topo sort algorithm: 1a

Step 1: Identify vertices that have no incoming edges

e If no such vertices, graph has cycle(s)
e Topological sort not possible — Halt.

/

Example of a cyclic graph

12

Topo sort algorithm:1b

Step 1: Identify vertices that have no incoming edges
e Select one such vertex

Select

13

Topo sort algorithm: 2

Step 2: Delete this vertex of in-degree 0 and all its
outgoing edges from the graph. Place it in the
output.

14

Continue until done
Repeat Step 1 and Step 2 until graph is empty

Select

9%

ORI

15

B

Select B. Copy to sorted list. Delete B and its edges.

16

C

Select C. Copy to sorted list. Delete C and its edges.

P
N

. N

/ \

' \
1

\

\ C !

>
~
. ~a

’
7’
-
1
1
1
1
1
, 1
’ 1
‘< 1
.
4 1
7z
7z 1
4 1
7’
7’ 1
.
, 1
4 1
.
7’ [}
7
a
—

17

D

Select D. Copy to sorted list. Delete D and its edges.

18

E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

-» @00066

,__\
~

. N

A \

'-|-| 1

[

'\ ,
~ e
~— =

19

Done

4.

Topological Sort Algorithm

Store each vertex’s In-Degree in an hash table D
Initialize queue with all “in-degree=0" vertices

While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree became
Zero

If all vertices are output then success, otherwise
there is a cycle.

21

Pseudocode

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty (Q) do
X := Dequeue (Q)
Output (x)
y := A[x]; // v gets a linked list of vertices
while y # null do
D[ly.value] := Dly.value] - 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y = y.next;
endwhile

endwhile

22

Topo Sort w/ queue

Queue (before):
Queue (after): 1, 6

@<§> o

Answer:

Topo Sort w/ queue

Queue (before): 1, 6
Queue (after): 6, 2

Answer: 1

24

Topo Sort w/ queue

Queue (before): 6, 2
Queue (after): 2

Answer: 1, 6

25

Topo Sort w/ queue

Queue (before): 2
Queue (after): 3

Answer: 1, 6, 2

26

Topo Sort w/ queue

Queue (before): 3
Queue (after): 4

Answer: 1,6, 2,3

27

Topo Sort w/ queue

Queue (before): 4
Queue (after): 5

Answer: 1,6, 2, 3,4

28

Topo Sort w/ queue

Queue (before): 5
Queue (after):

Answer: 1,6, 2,3,4,5

29

Topo Sort w/ stack

Stack (before):
Stack (after): 1, 6

Topo Sort w/ stack

Stack (before): 1, 6
Stack (after): 1, 7, 8

=" s
1 |
\3 B i c ‘@

Topo Sort w/ stack

Stack (before): 1, 7, 8
Stack (after): 1, 7

=" %
1 |
\3 B i c ‘@

Answer: 6, 8

Topo Sort w/ stack

Stack (before): 1, 7
Stack (after): 1

=" %
1 |
\3 B i c ‘;@)

Answer: 6, 8, 7

33

Topo Sort w/ stack

Stack (before): 1
Stack (after): 2

Answer: 6,8, 7,1

34

Topo Sort w/ stack

Stack (before): 2
Stack (after): 3

Answer:6,8,7,1, 2

35

Topo Sort w/ stack

Stack (before): 3

Stack (after): 4
0
(2 53 0
0 y _‘____""“-_-:@ 0
) 0
0 _v >

Answer:6,8,7,1, 2,3

36

Topo Sort w/ stack

Stack (before): 4
Stack (after): 5

0
------- 0
0 ’@ -------- . 0
@ : __________________ t’/ _____ >
B T \
0 v g .

Answer:6,8,7,1,2,3,4

37

Topo Sort w/ stack

Stack (before): 5

Stack (after):
0
(2 53 0
0 y _‘____""“-_-:@ 0
i) 0
0 3

Answer:6,8,7,1,2,3,4,5

38

TopoSort Fails (cycle)

Queue (before):
Queue (after): 1

39

TopoSort Fails (cycle)

Queue (before): 1
Queue (after): 2

@\@
%

@

Answer: 1

TopoSort Fails (cycle)

Queue (before): 2
Queue (after):

Answer: 1, 2

What is the run-time???

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty (Q) do
X := Dequeue (Q)
Output (x)
v := A[x]; // yv gets a linked list of vertices
while y # null do
D[ly.value] := Dly.value] - 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y = y.next;
endwhile

endwhile

42

Topological Sort Analysis

Initialize In-Degree array: O(|V| + |E])
Initialize Queue with In-Degree 0 vertices: O(|V])
Dequeue and output vertex:

— | V| vertices, each takes only O(1) to dequeue and
output: O(|V])

Reduce In-Degree of all vertices adjacent to a vertex and
Enqueue any In-Degree O vertices:

— O([E[)
For input graph G=(V,E) run time = O(|V| + |E|)

— Linear time!

43

Minimum spanning tree

* tree: a connected, directed acyclic graph

* spanning tree: a subgraph of a graph, which meets
the constraints to be a tree (connected, acyclic) and
connects every vertex of the original graph

* minimum spanning tree: a spanning tree with
weight less than or equal to any other spanning tree
for the given graph

Min. span. tree applications

* Consider a cable TV company laying cable to a new
neighborhood...

— Can only bury the cable only along certain paths, then a graph could
represent which points are connected by those paths.

— Some of paths may be more expensive (i.e. longer, harder to install), so
these paths could be represented by edges with larger weights.

— A spanning tree for that graph would be a subset of those paths that
has no cycles but still connects to every house.

e Similar situations: installing electrical wiring in a house,
installing computer networks between cities, building

roads between neighborhoods, etc.

Spanning Tree Problem

* |Input: An undirected graph G=(V, E). G is
connected.
e QOutput: T subset of E such that

—(V, T) is a connected graph
— (V, T) has no cycles

Spanning Tree Psuedocode

spanningTree():
pick random vertex v.
T:={}
spanningTree(v, T)
return T.

spanningTree(v, T):
mark v as visited.
for each neighbor v; of v where there is an edge from v to v;:
if v, is not visited
add edge {v, vjto T
spanningTree(v, T)
return T.

Example of Depth First Search

ST(1)

{1,2}

Example Step 2

ST(1)
ST(2)

49

{1,2}{2,7}

Example Step 3

ST(1)
ST(2)
ST(7)

50

Example Step 4

{1,2}{2,7} {7,5}

51

Example Step 5

{1,2}{2,7} {7,5} {5,4}

52

Example Step 6

{1,2}{2,7} {7,5} {5,4} {4,3}

53

Example Step 7

{1,2}{2,7} {7,5} {5,4} {4,3}

54

Example Step 8

{1,2}{2,7} {7,5} {5,4} {4,3}

55

Example Step 9

{1,2}{2,7} {7,5} {5,4} {4,3}

56

Example Step 10

{1,2}{2,7} {7,5} {5,4} {4,3}

57

Example Step 11

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

58

Example Step 12

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

59

Example Step 13

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

60

Example Step 14

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

61

Example Step 15

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

ST(1)
ST(2)

62

Example Step 16

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

ST(1)

63

Minimum Spanning Tree Problem

* |nput: Undirected Graph G = (V, E) and a cost
function C from E to non-negative real
numbers. C(e) is the cost of edge e.

* Output: A spanning tree T with minimum total
cost. Thatis: T that minimizes

C(T) = E C(e)

Observations about Spanning Trees

* For any spanning tree T, inserting an edge e, .,
not in T creates a cycle

e But

— Removing any edge e, from the cycle gives back
a spanning tree

—If e,,, has a lower cost than e_,; we have
progressed!

Find the MST

Two Different Approaches

Prim’s Algorithm Kruskals’s Algorithm

Looks familiar! Completely different!

67

Prim’s algorithm

Idea: Grow a tree by adding an edge from the
“known” vertices to the “unknown”
vertices. Pick the edge with the smallest
weight.

"

known

Prim’s algorithm

Starting from empty T,

choose a vertex at random

and initialize

V={A} T={}

/ A
10 5

69

Prim’s algorithm

Choose the vertex u notin V

such that edge weight from u 10 3
to a vertex in V is minimal 1

(greedy!)

V={AC) o 8 /C\ 3

r={(AC)}

70

Prim’s algorithm

Repeat until all vertices have been
chosen °

V ={A,C,D} 10
T={(A.C), (C,D)} 1

71

Prim’s algorithm

V= {ACD,E}

T={(A,C), (C,D), (D,E)} 10 5

72

Prim’s algorithm

V= {A,C,D,E,B}

T={(A,C), (C,D), (D,E), (E,B)} 10 5

73

Prim’s algorithm

V= {A,C,D,E,B,F}

T={(A,C), (C,D), (D,E), (E,B), (B,F)} 10 5

74

Prim’s algorithm

V= {A,C,D,E,B,F,G}

T={(AC), (C.D). (D;E), (E,B), (BF), (E.G) }4¢ 5

75

Prim’s algorithm

Final Cost: 1+3+4+1+1+6=16

76

Prim's Algorithm Implementation

Prim():

for each vertex v: // Initialization
v's distance := infinity.
v's previous := none.
mark v as unknown.

choose random node v1.

v1's distance := 0.

List := {all vertices}.

T:={}

while List is not empty:
v := remove List vertex with minimum distance.
add edge {v, v's previous} to T.
mark v as known.
for each unknown neighbor n of v:
if distance(v, n) is smaller than n's distance:
n's distance := distance(v, n).
n's previous :=v.

return T.

Prim’s algorithm Analysis

 How is it different from Djikstra's algorithm?

* |f the step that removes unknown vertex with
minimum distance is done with binary heap
the running time is:

O([E][log |V])

