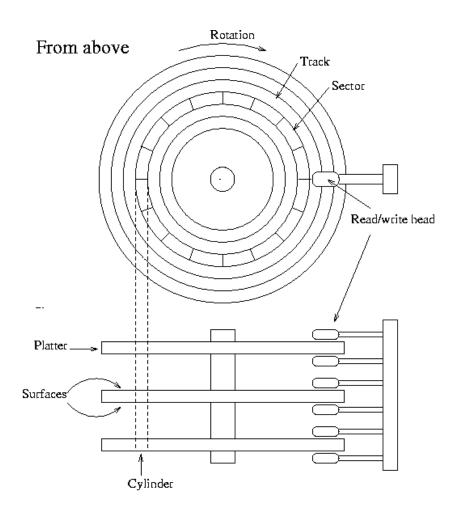
CSE 373: Data Structures and Algorithms

Lecture 25: Memory Hierarchy

Disk Based Data Structures

- All data structures we have examined are limited to main memory
 - Have been assuming data fits into main memory
- Counter-example: transaction data of a bank > 1 GB per day
 - uses secondary storage (hard disks, tapes, etc)
 - operations: insert, delete, searches
- Idea: Make a search tree that is secondary storage enabled

Memory Hierarchy


- Big-Oh assumes all operations take the same amount of time
 - Is this really true?

Cycle – time it takes to execute an instruction

	CPU			Cycles to access:	
				Registers	1
]	Cache	tens
				Main memory	hundreds
				Disk	millions

Hard Disks

- Large amount of storage but slow access
- Identifying a page takes a long time
 - Pays to read or write data in pages (i.e. blocks) of 0.5 8 KB in size

Algorithm Analysis

- Running time of disk-based data structures measured in terms of
 - computing time (CPU)
 - number of disk accesses
 - sequential reads
 - random reads
- Regular main-memory algorithms that work one data element at a time can not be "ported" to secondary storage in a straight forward way