CSE 373: Data Structures and
Algorithms

Set ADT

* set: A collection that does not allow duplicates

— We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

* basic set operations:
— insert: Add an element to the set (order doesn't matter).
— remove: Remove an element from the set.

— search: Efficiently determine if an element is a member of the
set.

set.contains ("to") true

»
»

v

set.contains ("be") false

set

Implementing Set ADT

Insert Remove Search
eeted e o(n) o(n)
>orted | o 10g(n)+n) | O(log(n) +n)| O(log(n))
array
Linked list O(1) O(n) O(n)
BST (if

balanced) Oflog n) O(log n) O(log n)

A different tactic

* How do you check to see if a word is in the
dictionary?
— linear search?
— binary search?
— A—7Ztabs?

Hash tables

table maintains b different "buckets"
buckets are numbered Oto b -1
hash function maps elements tovalueinOtob -1

operations use hash to determine which bucket an
element belongs in and only searches/modifies this
one bucket

hash func.
h(element)

>

elements (e.g., strings)

b-1

hash table

Hashing, hash functions

The idea: somehow we map every element into some index in the array
("hash" it);

this is its one and only place that it should go

— Lookup becomes constant-time: simply look at that one slot again later
to see if the element is there

— insert, remove, search all become O(1) !

For now, let's look at integers (int)

— a "hash function" h for intis trivial:
store int i at index i (a direct mapping)

e if i >=array.length, store i at index
(i % array.length)

— h(i) =i % array.length

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /, 18,41, 34

o 0 1 N N A W N = O

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /7, 18, 41, 34

o 0 1 N N A W N = O

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /7, 18,41, 34

o 0 1 N N A W N = O

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /7, 18, 41, 34

o 0 1 N N A W N = O

18

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /7, 18, 41, 34

o 0 1 N N A W N = O

18

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /7, 18, 41, 34

o 0 1 N N A W N = O

41

18

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /7, 18, 41, 34

o 0 1 N N A W N = O

41

18

Simple Integer Hash Functions

elements = integers
TableSize = 10

h(i) =i % 10

Insert: /7, 18, 41, 34

o 0 1 N N A W N = O

41

34

18

Hash function example
* h(i)=i% 10

— result is constrained to a range

— distributes keys over a range
— resultis stable

e constant-time lookup:
— just look at i % 10 again later

 We lose all ordering information:

— getMin, getMax, removeMin, removeMax
— the various ordered traversals
— printing items in sorted order

o 0 1 &N U A W N = O

41

34

Hash function for strings

elements = Strings
let's view a string by its letters:
— String S : Sy, Sy, Sy «+s Spq

how do we map a string into an integer index?
(how do we "hash" it?)

one possible hash function:
— treat first character as an int, and hash on that
* h(s) =s, % TableSize

* |s this a good hash function? When will strings collide?

Better string hash functions

* view a string by its letters:
— String S : Sy, Sy, Sy «+s Spq
* another possible hash function:
— treat each character as an int, sum them, and hash on that

n—I1

* h(s) = (ZS) % TableSize

* What's \;;rong with this hash function? When will
strings collide?

* athird option:

— performkz_a1 weighted sum of the letters, and hash on that

— h(s) = (;Si ‘37i)% TableSize

Hash collisions

* collision: the event that two hash table 0
elements map into the same slot in the array 1

2

 example: add 7, 18, 41, 34, then 21 3
— 21 hashes into the same slot as 41! 4

— 21 should not replace 41 in the hash table; S
they should both be there 6

7

collision resolution: means for fixing collisions g
in a hash table 9

21

34

18

Chaining

* chaining: All keys that map to the same hash
value are kept in a linked list

710

122 — 12 —>42

1107

O 00 N O o1 A W N +» O

Load factor

* |load factor: ratio of elements to capacity
* |oad factor = size / capacity=5/10=0.5

710

122 — 12 —>42

1107

O 00 N O o1 A W N +» O

Analysis of hash table search

* analysis of search, with chaining:

— unsuccessful: A
* the average length of a list at hash(/)

— successful: 1 + (A/2)

e one node, plus half the avg. length of a list (not
including the item)

Implementing Set with Hash Table

* Each Set entry adds an element to the table

— hash function will tell us where to put the element
in the hash table

 Hash table organized for constant time insert,
remove, and search

Implementing Set with Hash table

public interface StringSet {
public boolean add(String value);

public boolean contains (String value) ;
public void print();
public boolean remove (String wvalue);

public 1nt size();

StringHashEntry

public class StringHashEntry {
public String data; // data stored at this node
public StringHashEntry next; // reference to the next entry

// Constructs a single hash entry.
public StringHashEntry(String data) {
this (data, null);

public StringHashEntry(String data, StringHashEntry next) {
this.data = data;

this.next = next;

StringHashSet class

public class StringHashSet implements StringSet ({
private static final int DEFAULT SIZE = 11;
private StringHashEntry[] table;
private int size;

}

* Client code talks to the StringHashSet, not
to the entry objects stored in it

* The array (table) is of StringHashEntry

—each element in the array is a linked list of
elements that have the same hash

Set implementation: search

public boolean contains(String value) {
// figure out where value should be...

int valuePosition = hash (value);

// check to see if the value 1is in the set
StringHashEntry temp = table[valuePosition];
while (temp '= null) {
if (temp.data.equals(value)) {
return true;

}

temp = temp.next;

// otherwise, the value was not found

return false;

Set implementation: insert

 Similar structure to contains
— Calculate hash of new element
—Check if the element is already in the set

e Add the element to the front of the list
thatis at table[hash (value)]

Set implementation: insert

public boolean add(String value) {

int wvaluePosition = hash (value) ;

// check to see if the value is already in the set
StringHashEntry temp = table[valuePosition];
while (temp != null) {
if (temp.data.equals (value)) {
return false;

}

temp = temp.next;

// add the value to the set

StringHashEntry newEntry = new StringHashEntry(value, table[valuePosition]);
table[valuePosition] = newEntry;

size++;

return true;

